
Alvis Reference Manual v. 0.06

Marcin Szpyrka

February 9, 2010

Contents

1 Alvis Behaviour Description language 2
1.1 Identifiers . 2
1.2 Case Sensitivity in Alvis . 2
1.3 Keywords . 2
1.4 General file structure . 3
1.5 Data types . 3

1.5.1 Basic Types . 3
1.5.2 Composite data types . 4
1.5.3 Type synonyms . 4
1.5.4 Defining a new data type . 4
1.5.5 Structures . 5

1.6 Constants . 5
1.7 Implementation part . 5
1.8 Parameters . 6
1.9 Communication with outside world . 6

1.9.1 Pure synchronisation . 6
1.9.2 Value passing communication . 7
1.9.3 Guards . 7

1.10 Recursion . 7
1.11 Delays . 8
1.12 Parameters manipulation . 8
1.13 Alternatives . 9

1

Chapter 1

Alvis Behaviour Description language

Alvis Behaviour Description language (or shortly ABD language) is used to describe behaviour of
individual agents in an Alvis model. ABD language has its origin in CCS ([]) and XCCS ([]) process
algebras. However, to make the language more convenient from practical (engineering) point of
view, algebraic equations and operators have been replaced with instructions typical for high level
programming languages.

An Alvis model consists of two layers – graphical and code ones. The graphical layer is used
to design the communication channels among agents (parts of the considered model). The detailed
description of the layer is presented in chapter ??. The code layer is used to define:

• data types used in the model under consideration,

• functions for data manipulation

• behaviour of individual agents.

Alvis Behaviour Description language uses Haskell functional programming language to define
and manipulate data types. Therefore, the Haskell syntax has an influence on ABD language syntax.
. . .

1.1 Identifiers

1.2 Case Sensitivity in Alvis
Haskell is case sensitive language. ABD language is based on Haskell, thus it is case sensitive too.
Haskell requires type names to start with an uppercase letter, and variable names to start with a
lowercase letter. We follow in Haskell footsteps. Moreover, ABD language requires agent names to
start with uppercase letter, and port names to start with a lowercase letter.

1.3 Keywords
This section presents Alvis and Haskell keywords. They cannot be used as identifiers in Alvis models.
Some other words e.g. True, False might seem like keywords, but they are actually literals and of
course cannot be used as identifiers too.

2

Alvis keywords: agent, alt, cli, connections, delay, exec, far, in, jump, out, ports, sti (list not com-
pleted yet)

Haskell keywords: as, case, of, class, data, default, deriving, do, forall, foreign, hiding, if, then,
else, import, infix, infixl, infixr, instance, let, in, mdo, module, newtype, qualified, rec, type, where.

1.4 General file structure
The code layer of an Alvis model is stored in a textual source file. The general structure of such a file
is shown in listing 1.1.

-- Preamble:
-- types
-- constants
-- functions

-- Implementation:
-- agents

Listing 1.1: General structure of an ABD file

The preamble contains definition of types, constans and functions used to manipulate data in a
model. The preamble is encoded in pure Haskell.

The implementation contains definitions of agents’ behaviour. This part is encoded using native
ABD language statements, but the preamble contents is used to represent parameters values and to
manipulate them.

1.5 Data types
ABD language uses Haskell’s type system. Types in Haskell are strong, static and can be automat-
ically inferred. The strong property means that the type system guarantees that a program cannot
contains errors coming from using improper data types, such as using a string as an integer. More-
over, Haskell does not automatically coerce values from one type to another. The static property
means that the compiler knows the type of every value and expression at compile time, before any
code is executed. Haskell’s combination of strong and static typing makes it impossible for type errors
to occur at runtime.

Moreover, Haskell uses a type reference process. It means that compiler can automatically deduce
the type of almost all expressions in a program.

1.5.1 Basic Types
Table 1.1 contains selected basic Haskell’s types recommended to be used in ABD language.

3

Table 1.1: Selected basic Haskell’s types recommended to be used in ABD language
Type name Description
Char Unicode characters
Bool Values in Boolean logic – True and False
Int Fixed-width integer values – The exact range of values represented as

Int depends on the system’s longest native integer.
Double Float-point numbers typically 64 bits wide and uses the system’s native

floating-point representation.

1.5.2 Composite data types
The most common composite data types in Haskell (and ABD) are lists and tuples.

A list is a sequence of elements of the same type, with the elements being enclosed in square
parentheses and separated by commas:

[1,2,3,4] -- list of integers, type [Int]
[’a’,’b’,’c’] -- list of characters, type [Char] (String)
[True,False] -- list of Boolean values, type [Bool]

Haskell represents a text string as a list of Char values. The list shown in line 2 can be shortly
written as "abc". The empty list is denoted by [].

A tuple is a sequence of elements of possibly different types, with the elements being enclosed in
round parentheses and separated by commas:

(1,2) -- type (Int,Int)
(’a’,True) -- type (Char,Bool)
("abc",1,True) -- type (String,Int,Bool)

Tuples containing different number of types of elements have disting types, as do tuple whose
types appear in different orders.

1.5.3 Type synonyms
To make the source code more readable, we can introduce a synonym for an existing type:

type AgentID = Int
type InputData = (Int,Int,Int)
type TrafficSignal = (Char,Bool)

1.5.4 Defining a new data type
A new data type is defined using the data keyword:

data AgentDescription = AgentDesc Int String [String]

The identifier after the data keyword is the name of the new type, while the identifier after the =
sign is called value constructor (data constructor). A value constructor is a special function, which
name, as the name of type, must start with an uppercase letter. Types placed after a value constructor
name are called components of the type. A value constructor is used to create a new value of the
corresponding type, e.g.:

4

myAgent = AgentDesc 1 "Buffer" ["put","get"]

A value constructor name can be the same as the type one.
We can used more than one value constructor for one type. Such types in Haskell are called

algebraic data types. Each value constructor is separated in the definition by the | sign. Each of an
algebraic data type’s value constructor can take zero or more arguments.

An algebraic data type can be used to define an enumeration type, e.g.:

data Move = East | South | West | North

Moreover, an algebraic data type can be used to define a type with different variants of data, e.g.:

type Point = (Double,Double)
data Shape = Circle Point Double

| Rectangle Point Point

1.5.5 Structures

1.6 Constants
Constants are defined using parameterless Haskell functions:

e = 2,718281828
size = 10
name = "Agent"

The = symbol in Haskell code represents meaning – the name on the left is defined to be the
expression on the right. This meaning of = is valid in the preamble. In the implementation part, the =
symbol stands for the assignment operator.

1.7 Implementation part
The implementation part contains definitions of agents’ behaviour. It contains at least one agent block
of the following form:

agent AgentName
-- declaration of parameters
-- agent body

It is possible to share one definition among a few agents. In such a case, a few agents’ names are
placed after the keyword agent separated by spaces:

agent AgentName1 AgentName2 AgentName3
-- declaration of parameters
-- agent body

In Haskell and ABD language indentation is important, it continues an existing definition, instead
of starting a new one. It is however recommended to finish an agent body with an empty line.

5

1.8 Parameters
Parameters are defined using Haskell syntax. Each parameter is places in a separate line. The line
starts with a parameter name, then the :: symbol is places followed by the parameter type:

size :: Int
inputData :: (Int, Char)
queue :: [Double]
signal :: TrafficSignal

1.9 Communication with outside world
An agent can communicate with its outside world using communication channels called ports. Any
port can be used both as an input or an output one. The current role of a port is determined by two
factors:

1) connections to the port in the corresponding communication diagram;

2) statements used in the code layer.

Let’s focus on the code layer. Communication diagrams are described in chapter ??.

Ap

Figure 1.1: Agent A with port p

Figure 1.1 presents an agent A with a single port p. Suppose, the graphical layer (communica-
tion diagram) does not restrict the role of port p. Thus, the port can be used as an input or output
one. Moreover, any communication through the port can be a pure synchronisation or a single value
(probably of an composed type) can be sent.

1.9.1 Pure synchronisation
A pure synchronisation is a communication without sending values of parameters. Let’s consider the
following example:

agent A
in p
delay 1000
out p

Agent A collects a synchronisation signal through port p, waits 1 second and sends a synchronisation
signal through the same port.

6

1.9.2 Value passing communication
A value passing communication not only synchronises two agents but also a parameter value is send
through the corresponding ports. Let’s consider the following example:

agent A
i :: Int
in p i
delay 1000
out p i

Agent A collects an integer value through port p and assigns it to parameter i. Then, it waits 1 second
and sends the value of parameter i through the same port.

Instead of a parameter name, an expression of the suitable type or a constant can be used in the
out statement. In the following example, the doubled value of i is sent through port p:

agent A
i :: Int
in p i
delay 1000
out p (2 * i)

An expression must be placed inside round brackets.

1.9.3 Guards
A guard is an additional constraint which must be fulfilled before the statement is executed. Guards
are logical expressions, written in Haskell, placed inside round brackets after the statement name. In
the following example, the out statement is executed only if the value of i is less than 5:

agent A
i :: Int
in p i
delay 1000
out (i < 5) p i

When a guard is used in the in statement, then it can use only already stored values. In other
words, in the following example the current (old) value of i is used. It means that the new value will
be accepted only if the current value is less than 5:

in (i < 5) p i

1.10 Recursion
Recursion is the mechanism for looping in ABD language. Two language concept are use for this
purpose labels and jump statement. Labels in Alvis are identifiers followed by a colon. The jump
statement is composed of the jump key word and a label name (without colon). If necessary, the
jump key word may be followed by a guard placed inside round brackets.

Let’s consider agent Adder shown in Fig. 1.2. Its behaviour is defined as follows:

7

Adder
get1

get2
result

Figure 1.2: Agent Adder

agent Adder
x :: Int
y :: Int

start:
in get1 x
in get2 y
out result (x + y)
jump start

Agent Adder takes values for parameters x and y through ports get1 and get2 respectively,
sends the sum of those parameters through port result and repeats the sequence of statements.

1.11 Delays
To postpone an agent for some time the delay statement is used. The statement is composed of the
delay key word, a guard (if necessary) and a time period in milliseconds, e.g.

delay 500

1.12 Parameters manipulation
As it was said before, in the implementation part, the = symbol stands for the assignment operator.
The operator is used as a part of the exec statement. Thus, to assing a literal value 7 to an integer
parameter x the following statement can be used:

exec x = 7

If necessary, the exec key word may be followed by a guard placed inside round brackets.

exec (x == 0) x = 7

The exec statement is the default one in ABD language. Therefore, the exec keyword can be
omitted if no guard is used, and the first assignment can be simply written as:

x = 7

The assignment operator can be also followed by an expression. ABD language uses Haskell to
define and manipulate data types. Thus, such an expression takes the form of Haskell function call,
e.g.:

8

exec x = x + 1
exec x = rem x 3
exec (y >= 0) x = sqrt y

Of course, the exec key word can be omitted in the first and the second example.

1.13 Alternatives
In order to allow for description of agents whose behaviour may follow different alternative paths,
ABD language offer the alt statement. The simplest form of the alt statement allows selecting from,
one or more alternatives.

B
p1

p2

Figure 1.3: Agent B

Let’s consider agent B show in Fig. 1.3 with the following definition:

agent B
x :: Int
y :: Int

start:
alt in p1

x = x + 1
jump start

alt in p2
y = y + 1
jump start

Agent B offers a choice between two alternatives. At the beginning of the main loop the agent is
ready to collect a signal through port p1 or port p2. If port p1 is selected, variable x is increased and
the loop is repeated. In similar way the second alternative if performed.

Each of alternatives of the alt statement is called a branch. All statements that constitutes a
branch must have the same indentation, e.g. the in, exec and jump statements in the first branch.
The considered code can be also written as follows:

agent B
x :: Int
y :: Int

start:
alt

in p1
x = x + 1
jump start

9

alt
in p2
y = y + 1
jump start

The selection between branches can depend on guards associated with each branch, e.g. state-
ments in the first branch. The considered code can be also written as follows:

agent B
x :: Int
y :: Int

start:
alt (x < 10)

in p1
x = x + 1
jump start

alt (y < 20)
in p2
y = y + 1
jump start

When an alt statement is to be executed, all guards are evaluated to determinw which branches
are open. An branch is called open, if it does not have a guard attached or its guard evaluates to true.
Otherwise, a branch is called closed. If more than one branch is open, the choice between them is
indeterministic.

10

