
Marcin Szpyrka, Piotr Matyasik,

Rafaª Mrówka, Leszek Kotulski

Alvis modelling language

Draft, version 0.33

January 22, 2012

Contents

1 Introduction . 1
1.1 Related works . 2
1.2 Contents of the book . 4

2 Communication diagrams . 5
2.1 Nonhierarchical Communication Diagrams 5
2.2 Hierarchical Communication Diagrams . 9

3 Code layer . 15
3.1 Code structure . 15
3.2 Types and parameters . 16
3.3 Communication statements . 19
3.4 Loop statements and recursion . 20
3.5 Alternatives . 22
3.6 Procedures . 24
3.7 Other statements . 26

4 Speci�cation of model environment . 29
4.1 Border ports . 29
4.2 ATS system example . 32

5 Formal description of models . 37
5.1 Non-hierarchical diagrams . 37
5.2 Hierarchical communication diagrams . 39
5.3 Hierarchy elimination . 43
5.4 Models . 45

6 Models with α0 system layer . 47
6.1 Code layer for untimed models . 47
6.2 Agents state . 47
6.3 Model state . 50

VI Contents

6.4 Transitions . 55
6.5 LTS graphs . 65

References . 71

1

Introduction

The Phenomena, such as concurrency and non-determinism that are central
to modelling embedded or distributed systems, turn out to be very hard to
handle with standard techniques, such as peer reviewing or testing. Formal
methods included into the design process may provide more e�ective veri-
�cation techniques, and may reduce the veri�cation time and system costs.
Unfortunately, there is a gap between formal mathematical modelling lan-
guages and languages used in everyday engineering practice. Formal methods
like Petri nets [1], [2], [3], [4], [5], [6], process algebras [7], [8], [9], [10], [11],
[12] or time automata [13], [3] provide techniques for a formal speci�cation
and modelling of concurrent systems but they are very seldom used in real
IT projects. Due to their speci�c mathematical syntax, these languages are
treated as the ones suitable only for scientists.

Alvis is a new modelling language for developing concurrent (embedded)
systems. The language is being developed within the con�nes of the Alvis
project at AGH University of Science and Technology in Krakow, Poland. Be-
ginning of the Alvis project dates back to April 2009. The aim of the project is
to work out a language suitable for e�cient modelling and formal veri�cation
of concurrent systems. Especially, we focus on embedded systems. Alvis [14],
[15], [16] is a modelling language for real-time concurrent systems. The key
concept of Alvis is agent. The name has been taken from the CCS process
algebra [9] and denotes any distinguished part of the system under consider-
ation with de�ned identity persisting in time. In contrast to process algebras,
Alvis uses a high level programming language based on the Haskell syntax,
instead of algebraic equations. Moreover, it combines hierarchical graphical
modelling with high level programming language statements. An Alvis model
is composed of three layers:

Graphical layer � is used to de�ne data and control �ow among agents. The
layer takes the form of a hierarchical graph and supports both top-down
and bottom-up approaches to systems development.

2 1 Introduction

Code layer � is used to describe the behaviour of individual agents. It uses
both Haskell functional programming language [17] and original Alvis
statements.

System layer � depends on the model running environment i.e. the hardware
and/or operating system. The layer is the prede�ned one. The layer is
used for simulation and analysis purposes.

Alvis uses a very small number of graphical items and language state-
ments. Our goal was to provide a �exible language with a small number of
concepts, but with a possibility of a formal veri�cation of models. An Alvis
model semantic �nds expression in a LTS graph (labelled transition system).
Execution of any language statement is expressed as a transition between for-
mally de�ned states of such a model. An LTS graph can be encoded using
Binary Coded Graphs (BCG) format and the CADP toolbox [18] and model
checking techniques [19] can be used to verify its properties.

1.1 Related works

Alvis has its origins in the CCS process algebra [9], [10] and the XCCS lan-
guage [20]. The main result of the fact is the communication model used in
Alvis that is similar to the one used in CCS and the rendes-vous mechanism
used in Ada [21]. However, the Alvis language has many features in common
with other modelling languages used in industry.

E-LOTOS is an extension of the LOTOS modelling language (Language
Of Temporal Ordering Speci�cation) [22]. The most important enhancements
introduced in E-LOTOS are: the quantitative time, a new de�nition for data
types and the construction of values of prede�ned types, modularity, func-
tions, and processes in separate modules, controlling their visibility, module
interfaces, and the de�nition of generic modules, very useful for code reuse and
development distribution. E-LOTOS adds new operators like: the sequential
composition operator that allows concatenation of two processes, the general
parallel operator, the suspend/resume operator, operators to raise exceptions
and to handle them, the renaming operator which allows renaming of actions
and exceptions, and to modify their parameters. The main intention of the E-
LOTOS extension was to enable modelling of the hardware layer of a system.
Thus, in the speci�cation, we can �nd such artifacts as interrupts, signals,
and the ability to de�ne events in time. With such extensions, E-LOTOS sig-
ni�cantly expanded the possibility of using the algebra of processes, which is
the starting point for the speci�cation in this language.

It should be noted that the Alvis language has many features in com-
mon with E-LOTOS. First of all, Alvis as E-LOTOS is derived from process
algebras. Alvis, like E-LOTOS, was intended to allow formal modelling and
veri�cation of distributed real-time systems. To meet the requirements, Alvis
provides a concept of time and a delay operator. In contrast to E-LOTOS,

1.1 Related works 3

Alvis provides graphical modelling language. Moreover, Alvis toolkit supports
a LTS graph generation, which signi�cantly simpli�es the formal veri�cation
of models.

System Modelling Language (SysML) [23] aims to standardize the process
of a system speci�cation and modelling. The original language speci�cation
was developed as an open source project on behalf of the International Council
on Systems Engineering INCOS and the Object Management Group (OMG).
SysML is a general purpose modelling language for systems engineering ap-
plications. In particular, it adds two new types of diagrams: requirement and
parametric diagrams. The Alvis language has many common features with the
SysML block diagrams and activity diagrams: ports, property blocks, commu-
nication among the blocks, hierarchical models. Unlike SysML, Alvis combines
structure diagrams (block diagrams) and behaviour (activity diagrams) into
a single diagram. In addition, Alvis de�nes formal semantics for the various
artifacts, which is not the case in SysML. The concept of agent in Alvis corre-
sponds with the SysML block de�nition. The formal semantics of Alvis allows
you to create automated tools for veri�cation, validation and runtime of Alvis
models. SysML is a general-purpose systems modelling language, which covers
most of the software engineering phases from analysis to testing and imple-
mentation. Alvis is focused on the structural model, the behavioural aspects
of the system and formal veri�cation of its properties. Its main area of appli-
cation are distributed and embedded real-time systems. Alvis can be used as
an extension to the software engineering process based on SysML.

Ada is the only ISO standard object-oriented concurrent real-time pro-
gramming language [24], [21], [25]. Ada has been designed to address the
needs of large-scale system development, especially for distributed and em-
bedded systems. Ada is equipped with mechanisms for concurrent program-
ming. The main concurrency constructs are tasks (processes), which model
active entities, and protected objects, which model shared data structures
that need to be accessed with mutual exclusion. Tasks can communicate with
each other directly (using synchronous mechanism called rendezvous) or in-
directly through protected objects. The Annex E of Ada de�nes facilities for
supporting the implementation of distributed systems using multiple parti-
tions working cooperatively as part of a single Ada program. A distributed
system is an interconnection of one or more processing nodes and zero or more
storage nodes. A few constructs in Ada were an inspiration while developing
Alvis language. For example, protected objects have been used to de�ne pas-
sive agents and the Ada select statement has been used to de�ne the Alvis
select statement. An Alvis model composed of few agents that work concur-
rently is similar to an Ada distributed system. Active agents can be treated
as processing nodes, while passive agents as storage ones. The main di�erence
between Alvis and Ada is the communication model. First of all, Alvis uses
a simpli�ed rendezvous mechanism with equal agents without distinguishing
servers and clients. Moreover, Alvis does not support asynchronous procedure
calling, a procedure uses an active agent context. Finally, Alvis in contrast to

4 1 Introduction

Ada uses signi�cantly less language statements and enables a formal veri�ca-
tion.

SCADE [26] is a product developed by the Esterel Technologies company.
It is a complex tool for developing a control software for embedded criti-
cal systems and for distributed systems. A system is described as an input
to output transformation. In every cycle inputs are transformed to outputs
according to a speci�cation provided by functions: linear and discrete and
state machine. SCADE allows system developer to choose from a large library
of prede�ned components. The KCG code generator, which is a part of the
SCADE suite, produces C code that has all the properties required for safety-
critical software. SCADE also provides tools for checking system speci�cation
and veri�cation of the developed model.

The Alvis approach is very di�erent. The system in Alvis is represented as
a set of communicating tasks which are continuously processing their instruc-
tions. Alvis also has no code generation phase, because it is an executable
speci�cation itself. Moreover, the system veri�cation in Alvis is based on an
LTS graph generation instead of speci�cation-model consistency and stati-
cal code checking. SCADE and Alvis have also di�erent approaches to types.
The �rst one adopts simple static C language types due to speci�c runtime
requirements, while the second one uses the Haskell type system.

1.2 Contents of the book

2

Communication diagrams

As it was already said, the key concept of Alvis is agent that denotes any dis-
tinguished part of the system under consideration with de�ned identity per-
sisting in time. There are two kinds of agents in Alvis. Active agents perform
some activities and are similar to tasks in Ada programming language [21],
[25]. Each of them can be treated as a thread of control in a concurrent or
distributed system. On the other hand, passive agents do not perform any indi-
vidual activity, and are similar to protected objects (shared variables). Passive
agents provide mechanism for the mutual exclusion and data synchronisation.

A communication diagram is a hierarchical graph whose nodes may rep-
resent both agents (active or passive) and parts of the model from the lower
level. They are the only way in the Alvis modelling language, to point out
agents that communicate one with another. Moreover, the diagrams allow
programmers to combine sets of agents into modules that are also represented
as agents (called hierarchical ones).

2.1 Nonhierarchical Communication Diagrams

Active agents are drawn as rounded boxes while passive ones as rectangles.
An agent's identi�er (name) is placed inside the corresponding shape. The
�rst character of the identi�er must be an upper-case letter. Other characters
(if any) must be alphabetic characters, either upper-case or lower-case, dig-
its, or an underscore. Alvis identi�ers are case sensitive. Moreover, the Alvis
keywords cannot be used as identi�ers. Names of agents that are initially acti-
vated (represent running processes, see Chapter 5) are underlined. Graphical
representation of Alvis agents (also hierarchical) is shown in Fig. 2.1.

An agent can communicate with other agents through ports. Ports are
drawn as circles placed at the edges of the corresponding rounded box or
rectangle. Each agent port must have a unique identi�er (name) assigned,
but ports of di�erent agents may have the same identi�er assigned. A port's
identi�er (name) is placed inside the corresponding rounded box/rectangle

6 2 Communication diagrams

Fig. 2.1. Agents (from left): active, passive, hierarchical

next to the port. It must ful�ll the same requirements as agents' identi�ers
but its �rst character must be a lower-case letter.

All ports have the same graphical representation regardless of the fact
whether they are used as input or output ones. However, we can distinguished
some subsets of ports based on the role they play in a model.

• Border ports are used for a communication with the environment of an
embedded system. They are speci�ed in the environment statement (see
Chapter 3). Both active and passive agents can contain border ports.
Ports that are not border ones, are called internal ports.

• Procedure ports are internal ports of passive agents that represent proce-
dures � each of them is an argument of the proc statement (see Chapter 3).

Alvis agents can communicate with each other directly using the con-
nection mechanism (communication channels). A communication channel is
de�ned explicitly between two agents and connects two ports. A communi-
cation channel cannot connect two ports of the same agent. Communication
channels are drawn as lines (or broken lines). An arrowhead points out the
input port for the particular connection. Communication channels without
arrowheads represent pairs of connections with opposite directions. Examples
of communication channels are shown in Fig. 2.2.

Fig. 2.2. One-way and two-way communication channels

Border ports can be used only for the communication with environment,
thus they cannot used as elements of communication channels.

A connection between two active agents creates a synchronisation point
between them. Connections between two active agents can be either one or
two-way connection. An internal port with at least one two-way connection
or at least one one-way connection such the port is the input port for the

2.1 Nonhierarchical Communication Diagrams 7

connection is called an input port. Similarly, an internal port with at least
one two-way connection or at least one one-way connection such the port is
the output port for the connection is called an output port. Input and output
border ports are distinguished based on the in and out clauses used in the
environment statement (see Chapter 4).

Fig. 2.3. Example of connections among active agents

An input port can be used an argument of the in statement. Similarly, an
output port can be used an argument of the out statement (see Chapter 3). Let
us consider the communication diagram shown in Fig. 2.3. Port b is an input
but not output port. It means that it cannot be used to send any signals/values
from agent B. On the other hand, port c is both an input and output port.
Thus, it can play a double role in the model. It should be underlined that
it is not necessary to used port c both as an argument of the in and out
statements, but the two-way connection gives such an opportunity.

In the diagram represented in Fig. 2.3 signals or/and values can be send
between agents A and C in any directions, while agent B can only collect
signals or/and values sent by agent A. In other words, if agent A initialises a
communication providing a signal/value to port a, the value can be collected
(if suitable statements are used) by agent B or C. If agent A initialises a
communication demanding a signal/value on port a, such a signal/value can
be provided only by agent B.

Connections with passive agents must be one-way ones. There are to pos-
sibilities:

1. A connection between an active agent port and a passive agent procedure
port � the active agent calls a procedure of the passive agent;

2. A connection between a passive agent non-procedure port and a passive
agent procedure port � one passive agent calls, using a non-procedure
port, a procedure of another passive agent.

8 2 Communication diagrams

Alvis procedures are divided into input and output ones. An input proce-
dure takes one argument while an output one provides a single result. A port
that represents an input procedure may be used in connections only as an
input port. On the other hand, a port that represents an output procedure
may be used only as an output port. In case of passive agents, non-procedures
ports only can be both input and output ones.

Fig. 2.4. Communication diagram of the dining philosophers problem

An example of a communication diagram for a dining philosophers problem
is shown in Fig. 2.4. Let us recall the problem brie�y. Five philosophers are
sitting around a circular table. Each philosopher spends his life alternately
thinking and eating. There is a large bowl of spaghetti in the center of the
table. There are also �ve plates at the table and �ve forks set between the
plates. Eating spaghetti requires the use of two forks. Each philosopher thinks.
When he gets hungry, he picks up the two forks that are closest to him. If a
philosopher gets the chance to pick up both forks, he eats for a while. After a
philosopher �nishes eating, he puts down the forks and starts to think.

2.2 Hierarchical Communication Diagrams 9

Philosophers are represented by active agents with to ports used to to
get and put right and left forks respectively. Forks are represented by passive
agents with to procedures: get representing taking a fork from the table and
put representing putting it back.

2.2 Hierarchical Communication Diagrams

For the e�ective modelling, Alvis communication diagrams enable distributing
parts of a diagram across multiple subdiagrams called pages. Pages are com-
bined using the so-called substitution mechanism. An agent on one level can
be replaced by a page on the lower level. Such a substituted agent is called hi-
erarchical one. On the other hand, a part of a communication diagram can be
treated as a module and represented by a single agent on a higher level. Thus,
communication diagrams support both top-down and bottom-up approaches.

Fig. 2.5. Page D1.

The substitution mechanism is based on a binding function π that maps
ports of a hierarchical agent to ports with the same names (called join ports)
on the corresponding page. If the function is a bijection the substitution is
called a simple one. An example of the simple substitution is shown in Fig. 2.5
and 2.6. The page shown in Fig. 2.6 is assigned to agent B. It should be
underlined that the join ports may be distributed among a few agents, but
they cannot be connected with any ports.

A hierarchical agent can be replaced with its subpage using the following
algorithm.

1. Remove the agent B from the page D1 with all its connections.
2. Move the contents of the page D2 onto the page D1.

10 2 Communication diagrams

Fig. 2.6. Page D2.

Fig. 2.7. Application of the simple substitution.

3. Add connections � If after removing of the agent B, from the page D1, it
has been removed a connection between ports B.a and X.p, then we add

2.2 Hierarchical Communication Diagrams 11

a connection between ports X.p and π(B.a) with the same direction as
the removed one.

The result of application of the considered simple substitution is presented
in Fig. 2.7. Elimination of all hierarchical agents provides an equivalent non-
hierarchical communication diagram. The elimination does not in�uence a
model properties, thus for theoretical considerations non-hierarchical models
will be used.

Fig. 2.8. Readers-Writers system � top level page of the communication diagram.

Fig. 2.9. Readers-Writers system � page Readers.

Fig. 2.10. Readers-Writers system � page Writers.

12 2 Communication diagrams

A port of a hierarhical agent may have assigned more than one join port
on the subpage. In such a case the binding function π is not a bijection and
the substitution is called an extended one. Of course all join ports that are
connected with a port of the corresponding hierarchical agent must have the
same names, and thus they must belong to di�erent agents. (An agent cannot
have two ports with the same name).

To represent extended substitutions let us consider the well-known readers-
writers problem. We have two kinds of agents called readers and writers re-
spectively that use a shared resource called library here. At most, one writer
can use the library at any time, but a few readers can use it at the same time.
The communication diagram for such a system with four readers and two
writers is shown in Fig. 2.5, 2.9 and 2.10. The �gures represent three pages
that constitute a hierarchical communication diagram.

To present the way such pages are connected the so-called page hierarchy
graph is used. The graph is shown in Fig. 2.11. Edges of a page hierarchy graph
are labelled with names of hierarchical agents, while nodes represent pages in
the corresponding model. The System node represents the top level page (so-
called primary page) of the considered model. If a hierarchical communication
diagram contains only one primary page it is a tree. Otherwise, it is a forest.

WritersReaders

System

WritersReaders

Fig. 2.11. Page hierarchy graph

Let us focus on the hierarchical agent Readers and its port r_in. There
are four ports with the same name on the corresponding subpage. Thus, the
port is connected with all of them. The result of replacing of agents Readers
and Writers with their subpages is presented in Fig. 2.7. It is easy to see that
we can change the number of readers or writers by changing the number of
agents on corresponding pages. There is no need to change any connections
in this model.

As it was already said, the elimination of hierarchical agents leads to a non-
hierarchical diagram suitable for theoretical purposes. On the other hand, we
can move a part of complex page into a new page and put a hierarchical agent
into the original one. This reduces the size of a page an makes a model more
readable. Moreover, as it was shown in the previous example, using hierarchy
can reduce the number of connections signi�cantly and makes a model more
�exible � it is easier to make any changes in a model.

2.2 Hierarchical Communication Diagrams 13

Fig. 2.12. Application of the extended substitution.

For more details on communication diagrams and their formal de�nitions
see Chapter 5.

3

Code layer

This chapter provides description of the Alvis statements used in the code
layer. The layer is used to describe the behaviour of individual agents in Alvis
models. The layer uses Alvis behaviour description statements and some el-
ements of the Haskell functional programming language. In spite of the fact
that Alvis has its origin in CCS [10], [11], [9] and XCCS [20]. [12] process
algebras, to make the language more convenient from the practical (engineer-
ing) point of view, algebraic equations and operators have been replaced with
statements typical for high level programming languages. The code layer is
used to:

• de�ne data types used in the model under consideration,
• de�ne functions for data manipulation,
• specify the considered embedded system environment,
• de�ne behaviour of individual agents.

3.1 Code structure

The general structure of the code layer is presented in Listing 3.1. The pream-
ble contains de�nitions of types, constants and functions used to manipulate
data in a model. This part of the preamble is encoded in pure Haskell. More-
over, the preamble may contain speci�cation of some environment activities
that may be useful e.g. for an Alvis model simulation.

The implementation contains de�nitions of the agents' behaviour. This
part is encoded using native Alvis statements, but the preamble contents
is used to represent parameters values and to manipulate them. It contains
at least one agent block as shown in Listing 3.2. It is possible to share one
de�nition among a few agents. In such a case, a few agents' names are placed
after the keyword agent separated by commas. If necessary, an agent's name
is followed by its priority put inside round brackets. Priorities range from 0
to 9. Zero is the higher system priority.

16 3 Code layer

-- Preamble:

-- types

-- constants

-- functions

-- environment specification

-- Implementation:

-- agents

Listing 3.1. Structure of the code layer

agent AgentName

{

-- declaration of parameters

-- agent body

}

Listing 3.2. Structure of an agent block

Both Haskell and Alvis are case sensitive languages. Haskell requires type
names to start with an upper-case letter, and variable names to start with a
lower-case letter. We follow Haskell footsteps. Moreover, Alvis requires agent
names to start with an upper-case letter, and port names to start with a
lower-case letter.

3.2 Types and parameters

Alvis uses the Haskell's type system. Types in Haskell are strong, static and
can be automatically inferred. The strong property means that the type sys-
tem guarantees that a program cannot contain errors coming from using im-
proper data types, such as using a string as an integer. Moreover, Haskell does
not automatically coerce values from one type to another. The static prop-
erty means that the compiler knows the type of every value and expression
at compile time, before any code is executed. Haskell's combination of strong
and static typing makes it impossible for type errors to occur at runtime.

Selected basic Haskell types recommended to be used in Alvis are as fol-
lows:

• Char � Unicode characters.
• Bool � Values in Boolean logic (True and False).
• Int � Fixed-width integer values � The exact range of values represented

as Int depends on the system's longest native integer.
• Double � Float-point numbers typically 64 bits wide and uses the system's

native �oating-point representation.

The most common composite data types in Haskell (and Alvis) are lists
and tuples (see Listing 3.3). A list is a sequence of elements of the same

3.2 Types and parameters 17

type, with the elements being enclosed in square brackets and separated by
commas, while a tuple is a sequence of elements of possibly di�erent types,
with the elements being enclosed in parentheses and separated by commas.
Haskell represents a text string as a list of Char values. Tuples containing
di�erent number of types of elements have disting types, as do tuple whose
types appear in di�erent orders.

[1,2,3,4] -- type [Int]

['a','b','c'] -- type [Char] (String)

[True ,False] -- type [Bool]

(1,2) -- type (Int ,Int)

('a',True) -- type (Char ,Bool)

("abc",1,True) -- type (String ,Int ,Bool)

Listing 3.3. Examples of Haskell composite data types

To make the source code more readable, one can introduce a synonym for
an existing type as shown in Listing 3.4.

type AgentID = Int;

type InputData = (Int ,Int ,Int);

type TrafficSignal = (Char ,Bool);

Listing 3.4. Synonyms for composite data types

A new data type is de�ned using the data keyword (see Listing 3.5). The
identi�er after the data keyword is the name of the new type, while the iden-
ti�er after the = sign is called value constructor (data constructor). A value
constructor is a special function, which name, as the name of type, must start
with an uppercase letter. Types placed after a value constructor name are
called components of the type. A value constructor is used to create a new
value of the corresponding type as shown in the second line of Listing 3.5.
A value constructor name can be the same as the type one.

data AgentDescription = AgentDesc Int String [String];

myAgent = AgentDesc 1 "Buffer" ["put","get"];

Listing 3.5. New composite data type

We can used more than one value constructor for one type. Such types in
Haskell are called algebraic data types. Each value constructor is separated in
the de�nition by the | sign. Each of an algebraic data type's value constructor

18 3 Code layer

can take zero or more arguments. An algebraic data type can be used to de�ne
an enumeration type or a type with di�erent variants of data (see Listing 3.6).

data Move = East | South | West | North;

type Point = (Double ,Double);

data Shape = Circle Point Double

| Rectangle Point Point;

Listing 3.6. Examples of Haskell algebraic data types

Constants are de�ned using parameterless Haskell functions as shown in
Listing 3.7.

size = 10;

name = "Agent";

Listing 3.7. Examples of constants

The = symbol in Haskell code represents meaning � the name on the left
is de�ned to be the expression on the right. This meaning of = is valid in the
preamble. In the implementation part, the = symbol stands for the assignment
operator.

Parameters are de�ned using the Haskell syntax. Each parameter is placed
in a separate line. The line starts with a parameter name, then the :: symbol
is placed followed by the parameter type. The type must be followed by the
= symbol and the parameter initial value as shown in Listing 3.8.

size :: Int = 7;

queue :: [Double] = [];

inputData :: (Int , Char) = (0, 'x');

Listing 3.8. Examples of parameters de�nitions

The assignment operator is also used as a part of the exec statement.
The exec statement is the default one. Therefore, the exec keyword can be
omitted. Thus, to assign a literal value 7 to an integer parameter x the �rst
and the second statement presented in Listing 3.9 can be used. The assignment
operator can also be followed by an expression. Alvis uses Haskell to de�ne
and manipulate data types. Thus, such an expression may take the form of
a Haskell function call (see Listing 3.9).

3.3 Communication statements 19

exec x = 7;

x = 7;

x = x + 1;

x = rem x 3;

x = sqrt y;

Listing 3.9. Examples of using the exec statement

3.3 Communication statements

An agent can communicate with its outside world using ports. Each port can
be used both as an input or an output one. The current role of a port is
determined by two factors:

1. Connections to the port in the corresponding communication diagram �
e.g. if a port p is used only as an input port for an one-way connection, it
cannot be used as an output port.

2. Statements used in the code layer � e.g. if a port p is used only as an
argument of the in statement, it is an input port even if all its connections
are two-way ones.

Moreover, any communication through a port can be a pure synchronisa-
tion or a single value (probably of a composed type) can be sent/collected.
A pure synchronisation is a communication without sending any values of
parameters.

Alvis uses two statements for the communication. The in statement for
collecting data and out for sending. Each of them takes a port name as its
�rst argument and optionally a parameter name as the second. Parameters are
not used for the pure communication. Syntax for these statements is given in
Listing 3.10 (p stands for a port name and x stands for a parameter). The in
statement assigns the collected value to its parameter, while the out statement
sends the value of its parameter. Instead of a parameter, a constant can be
used in the out statement.

in p;

in p x;

out p;

out p x;

Listing 3.10. Syntax of the in/out statements

There are two types of communication in Alvis. A communication between
two active agents can be initialised by any of them. The agent that initialises
it, performs the out statement to provide some information and waits for the
second agent to take it, or performs the in statement to express its readiness
to collect some information and waits until the second agent provides it.

20 3 Code layer

On the other hand, a communication between an active and a passive agent
can be initialised only by the former. Any procedure in Alvis uses only one
either input or output parameter (or signal in case of parameterless commu-
nication). In case of an input procedure, an active agent calls the procedure
using the out statement (and provides the parameter, if any, at the same time).
If the corresponding passive agent is in the waiting mode and the procedure
is accessible, the agent starts it in the active agent context. The passive agent
collects the signal/parameter using the in statement, but it is not necessary
to put the statement as the �rst procedure step. Similarly, in case of an out-
put procedure, an active agent calls the procedure using the in statement.
The passive agent returns the result using the out statement, but it is not
necessary to put the statement as the last procedure step.

There is also possible to call a procedure of a passive agent from a pro-
cedure of another passive agent. This is similar to calling a procedure by an
active agent. For more details see Chapter 5.

3.4 Loop statements and recursion

Alvis provides three kinds of loop statements. The �rst one is the most general
loop statement as shown in Listing 3.11. It repeats its contents in�nitely.

loop

{

-- at least one statement inside

}

Listing 3.11. General loop statement

The second loop repeats its contents while the guard (g) is satis�ed (see
Listing 3.12). Guards are logical expressions, written in Haskell, placed inside
round brackets. The loop is similar to the while loop in most languages � the
guard is checked every time before entering the loop contents.

loop (g)

{

-- at least one statement inside

}

Listing 3.12. While loop statement

The last loop statement is the so-called loop every statement as shown
in Listing 3.13. The loop repeats its contents every t time-units. The default
time-unit in Alvis is millisecond.

3.4 Loop statements and recursion 21

loop (every t)

{

-- at least one statement inside

}

Listing 3.13. loop every statement

Let us consider the agent D shown in Fig. 3.1. The agent collect an integer
through its port p, doubles the parameter x value and sends its value through
port q. This sequence of statements is repeated in�nitely.

agent D

{

x :: Int = 0;

loop

{

in p x;

x = 2 * x;

out q x;

}

}

Fig. 3.1. Graphical representation and implementation for agent D

Recursion is another mechanism used for looping in the Alvis language.
Two language concepts are used for this purpose: labels and the jump state-
ment. Labels in Alvis are identi�ers followed by a colon. A label must start
with a lower case letter. The statement is composed of the jump key word and
a label name (without a colon). It is necessary to put at least one statement
after a label. In other words, a label cannot be followed by a closing curly
bracket. The jump statement is the key statement for translating algorithms
from CCS to Alvis. For example, the behaviour of the agent D from Fig. 3.1
can be also de�ned as shown in Listing 3.14.

22 3 Code layer

agent D

{

x :: Int = 0;

go:

in p x;

x = 2 * x;

out q x;

jump go;

}

Listing 3.14. De�nition of agent in�nite behaviour with the jump statement

3.5 Alternatives

Alvis provides a typical if else statement with optional else and elseif clauses.
The general syntax of the conditional statement is shown in Listing 3.15 � g1,
g2 and g3 stand for guards.

if (g1)

{

-- at least one statement inside

}

elseif (g2)

{

-- at least one statement inside

}

elseif (g3)

{

-- at least one statement inside

}

-- ...

else

{

-- at least one statement inside

}

Listing 3.15. Syntax of the conditional statement

In order to allow for the description of agents whose behaviour may follow
di�erent alternative paths, Alvis o�ers the select statement (see Listing 3.16).
The statement is similar to the basic select statement from the Ada pro-
gramming language [21], but there is no distinction between a server and a
client. The statement may contain a series of alt clauses called branches. Each
branch may be guarded. These guards divide branches into open and closed
ones. A branch is called open, if it does not have a guard attached or its guard
evaluates to True. Otherwise, a branch is called closed. To avoid indetermin-
ism, if more than one branch is open the �rst of them is chosen to be executed.

3.5 Alternatives 23

If all branches are closed, the corresponding agent is postponed until at least
one branch is open.

select {

alt (g1)

{

-- at least one statement inside

}

alt (g2)

{

-- at least one statement inside

}

alt (g3)

{

-- at least one statement inside

}

-- ...

}

Listing 3.16. Syntax of the select statement

To postpone an agent for some time the delay statement is used. The
statement is composed of the delay key word and a time period (default in
milliseconds). The statement is also used to de�ne time-outs. A branch may
contain the delay as its guard (see Listing 3.17). In such a case, the third
branch will be open after t time-units. Thus, if all branches are closed, the
corresponding agent waits t time-units and follows the last branch. However,
if at least one branch is open before the delay goes by, then the delay is
cancelled. An example of code layer with a time-out functionality can be
found in Section 4.2.

select {

alt (g1) {...}

alt (g2) {...}

alt (delay t) {...}

}

Listing 3.17. Syntax of the select statement with a time-out

Another typical guard is composed of the ready function provided by Alvis
system layers. The function takes as its argument a list of ports names of a
given agent (with in or out keywords to point out the communication direc-
tion), and returns True only if at least one of these ports can be used for a
communication immediately. In other words, the function returns true if:

24 3 Code layer

• for an input border port (see Chapter 4), the port is accessible and a
signal/value can be collected from the port immediately;

• for an output border port, the port is accessible and a signal/value can be
send through the port immediately;

• for an input internal port (see Chapter 4), another agent has already pro-
vided a value to the port;

• for an output internal port, another agent has already required a signal/-
value from that port.

select {

alt (ready [in(a)]) {...}

alt (ready [in(b)]) {...}

}

Listing 3.18. Example of the select statement with guards using the ready function

Let us consider the piece of code presented in Listinf 3.18. Suppose, both
ports are internal one. After entering the select statement, the agent waits (if
necessary) until another agent provides a signal/value to any of the ports a
or b. After providing a signal/value to one of these ports, the corresponding
branch is chosen.

3.6 Procedures

Passive agents in Alvis provide a mechanism for the mutual exclusion and
data synchronisation. They are based on protected objects from the Ada pro-
gramming language. Ports of a passive agent can be used as:

• procedure ports � the name of such a port is treated as a name of a proce-
dure;

• border ports � such ports can be used to communicate with the environ-
ment inside procedures of the agent;

• internal ports � such ports are connected with another passive agents and
are used to call other procedures inside procedures of the considered agent.

A communication with a passive agent is treated as a procedure call. It
can be initialised either by an active agent or by a passive one from inside
of its procedure. In case of an input procedure (a parameter is sent to the
corresponding passive agent), it is called with the out statement. After a
procedure is started, its performs its statements. It is necessary to put the in
statement as one of them � the statement is used to collect the parameter, but
it is not necessary to put the statement as the �rst procedure step. Similarly, in
case of an output procedure, it is called with the in statement. It is necessary
to put the out statement as one of its statements. It is used to provide the

3.6 Procedures 25

result, but it is not necessary to put the statement as the last procedure step.
In any case, a procedure is �nished if its last statement has been performed or
the exit statement has been performed. The exit statement can be used only
after the in/out statement that corresponds to the procedure call.

proc (g) p { ... }

Listing 3.19. Syntax of the proc statement

The general syntax of the proc statement is shown in Listing 3.19 � g and p
stand for the procedure guard and port respectively. A procedure is accessible
if its guard evaluates to True and the agent is in the Waiting mode.

agent Ph1 , Ph2 , Ph3 , Ph4 , Ph5 {

loop {

in right;

in left;

out right;

out left;

}

}

agent F1 , F2, F3, F4 , F5 {

taken :: Bool = False;

proc (taken == False) get {

taken = True;

out get;

}

proc (taken == True) put {

taken = False;

in put;

}

}

Listing 3.20. Example of the select statement with guards using the ready function

Let us consider the model of dining philosophers (see Section 2.1 and
Fig. 2.4). The code later for the model is shown in Listing 3.20. All philoso-
phers share the same behaviour as forks do. Each fork provides two procedures
get and put, but they cannot be accessible at the same time.

The exit statement can be also used inside an active agent code. In such
a case, after performing the statement, the active agent �nishes its activity.

26 3 Code layer

Table 3.1. Alvis statements

Statement Description

cli Turns o� the interrupts handlers.

critical {...} De�nes a critical section.

delay t Delays an agent execution for a given number of time-
units.

exec x = expression Evaluates the expression and assigns the result to the
parameter; the exec keyword can be omitted.

exit Terminates an active agent or a passive agent proce-
dure.

if (g1) {...} Conditional statement.
elseif (g2) {...}

elseif (g3) {...}

...

else {...}

in p Collects a signal/value through port p.
in p x

jump label Transfers the control to the line of code identi�ed with
the label.

jump far A Transfers the control to agent A.

loop {...} In�nite loop.
loop (g) {...} Repeats execution of the contents while the guard if

satis�ed..
loop (every t) {...} Repeats execution of the contents every t time-units.

null Empty statement.

out p Sends a signal/value through the port p.
out p x

proc (g) p {...} De�nes the procedure for port p of a passive agent. The
guard is optional.

select { Selects one of alternative choices.
alt (g1) {...}

alt (g2) {...}

alt (g3) {...}

...

}

start A Starts the agent A if it is in the Init state, otherwise
do nothing.

sti Turns on the interrupts handlers.

3.7 Other statements

An Alvis model contains a �xed number of agents. In other words, there is no
possibility to create or destroy agents dynamically. If an active agent starts
in the init mode, it is inactive until another agent activates it with the start
statement. Active agents that are initially activated are distinguished in the
communication diagram � their names are underlined.

3.7 Other statements 27

Empty curly brackets are not allowed in Alvis. If necessary, the empty
statement null can be put inside.

Border ports may be used to model interrupts handling in Alvis. It is possi-
ble to block collecting signals/values from the environment. The cli statement
is used to block border ports (turn o� the interrupts handlers), while sti is
used to turn it on again.

The critical section is used to de�ne a set of statements that cannot be
interrupted. The statement is useful when α1 system layer is used.

The last Alvis statement is jump far. It is used to transfers the control
to agent given as the parameter of the statement. The jump far statement is
useful for modelling scheduling functions on your own. The complete set of
Alvis statements is given in Table 3.1. To simplify the syntax, the following
symbols have been used. A stands for an agent name, p stands for a port name,
x stands for a parameter, g, g1, g2. . . stand for guards (Boolean conditions),
e stands for an expression and t stands for time-units.

4

Speci�cation of model environment

An embedded system is one that is a part of a larger one. It is surrounded
by other parts of the larger system that constitute the embedded system
environment. Such an embedded system collects inputs that come from its
environment (from sensors) and provide outputs that go to the environment
(to controllers). To verify an embedded system formally we cannot separate
it from its environment. Thus, if a formal language is used e.g. Petri nets [1],
[27], [28], time automata [7], process algebra [10] etc., an embedded system
model must include both the system and its environment. As a result of such
a situation a model is often signi�cantly more complex and the state explosion
problem makes a formal veri�cation di�cult or even impossible.

Alvis has been designed especially for embedded systems and one of its
main advantages is a possibility of a �exible speci�cation of a behaviour of
an embedded system's environment. Instead of designing the environment as
a part of the model it is possible to specify signals generated or collected by
the environment in a very simple way. This approach is also very useful from
the analysis point of view. We can freely move the system border. In other
words, we can start with modelling a very small part of the considered system
in the �rst stage, moving all other parts to the environment. Then we can add
more agents in the next stages. A state of a model is a sequence of agents'
states. Moving some agents to the embedded system environment can reduce
the model states space signi�cantly.

4.1 Border ports

Alvis agents may contain ports that are not used in any connection. Such ports
are called border ports and are used for a communication with the considered
system environment. Border ports can be used both for collecting or sending
some information to the embedded system environment. Properties of border
ports are speci�ed in the code layer preamble with the use of the environment
statement. Each border port used as an input one is described with at least

30 4 Speci�cation of model environment

one in clause. Similarly, each border port used as an output one is described
with at least one out clause. Each clause inside the environment statement
contains the following pieces of information:

• in or out key word,
• the border port name,
• a type name or a list of permissible values to be sent through the port,
• a list of time points, when the port is accessible,
• optionally some modi�ers: durable, queue, signal.

It should be underlined that border ports are ports without any connec-
tions and speci�ed inside the environment clause. Other ports will be called
internal ones. A model may contain an internal port without any connections,
but such a port is not speci�ed inside the environment clause.

in a [1..4] [];

in b [1..4] (map (100*) [1..]);

in c [1..4] (map (100*) [1..]) signal;

in d [1..4] (map (100*) [1..]) durable;

in e [1..4] (map (100*) [1..]) queue;

in f [1..4] (map (100*) [1..]) signal durable;

in g [1..4] (map (100*) [1..]) signal queue;

Listing 4.1. Examples of input border ports' speci�cation

Let us focus on the description of input border ports presented in List-
ing 4.1. Signals directions are considered from an embedded system point of
view, thus all considered ports are used to send information from an environ-
ment to the corresponding embedded system. In each case, one of the values
1, 2, 3, 4 (at random) can be collected through a port. However, the ports di�er
about the time points when values are accessible.

a A value from the port can be collected at any time point. An agent that
performs the in statement receives the value immediately (never waits for
it). Such border ports are useful for a modelling of input sensors whose
values can be read at any time.

b Every 100 time-unit (by default milliseconds) a value is provided by the
environment via the port. If none agent waits for it (waiting mode), the
value is lost.

c The port behaves similar to the b one, but the signal may not be provided.
d Every 100 time-unit a value is provided by the environment via the port.

The value is accessible for the corresponding embedded system until an
agent collects it. If while waiting for a collecting the value, another one is
sent via the port, the previous one is overwritten.

e The port behaves similar to the d one, but if while waiting for a collecting
the value, another one is sent via the port, it is put into a FIFO queue.

4.1 Border ports 31

f The port behaves similar to the c one, but the value is accessible for the
corresponding embedded system until an agent collects it or it is overwrit-
ten.

g The port behaves similar to the f one, but the values are put into a FIFO
queue.

The speci�cations of ports b, . . . , g ports use the Haskell map function and an
in�nite list. For more details (if necessary) see [17].

If a border port is used for a parameterless communication, then the �rst
list is empty. If di�erent kinds of signals can be sent through a border port,
then more than one in clause must be used, but the time points list must be
disjoint.

in a [] [1,3,6]

in a Bool [2,4,6,8]

Listing 4.2. Examples of a wrong border port speci�cation

Let us consider the speci�cation of a border port a presented in Listing 4.2.
Such a speci�cation is not allowed because the ambiguity that appears 6 time-
units after the system start � at the same time a value-less signal and a Boolean
value should be generated.

out a [1..4] [];

out b [1..4] (map (100*) [1..]);

out c [1..4] (map (100*) [1..]) signal;

out d [1..4] (map (100*) [1..]) durable;

out e [1..4] (map (100*) [1..]) queue;

out f [1..4] (map (100*) [1..]) signal durable;

out g [1..4] (map (100*) [1..]) signal queue;

Listing 4.3. Examples of output border ports' speci�cation

Let us focus on the description of output border ports presented in List-
ing 4.1.

a Any of the values 1, 2, 3, 4 can be sent through the port at any time point.
An agent that performs the out statement sends the value immediately
(never waits for the port accessibility).

b Any of the values 1, 2, 3, 4 can be sent through the port every 100 time-
units, but if the system is not ready to send a value then the opportunity
is lost.

c The port behaves similar to the b one, but the accessibility of the port is
not guaranteed.

32 4 Speci�cation of model environment

d Any of the values 1, 2, 3, 4 can be sent through the port every 100 time-
units, but if the system is not ready to send a value then the environment
waits for it.

e The port behaves similar to the d one, but the opportunities are put into a
FIFO queue.

f The port behaves similar to the d one, but the accessibility of the port is
not guaranteed.

g The port behaves similar to the e one, but the accessibility of the port is
not guaranteed.

If a border port is used both as an input and an output one, then it must
be described both with the in and out clauses. If di�erent kinds of signals can
be sent through a border port, then more than one in or out clause can be
used, but the time points lists must be pairwise disjoint.

It should be underlined that only the signal modi�er should be used in
the �nal model of an embedded system. Other modi�ers are de�ned mainly
for the veri�cation purposes, if reduced models are considered.

Border ports must have unique names in a model. The same name of a
border port used twice means that two agents use the same border port.

4.2 ATS system example

Trains could not run safely without signalling devices. Some automatic sys-
tems are used to transfer signals directly to a driver cab. A driver must always
obey such a signal, but the possibility of human error can cause serious acci-
dents. As it was already said, Automatic Train Protection (ATP) systems are
used to guarantee a train safety even if a driver is not capable of controlling
the train. Furthermore, computer systems can drive a train without a human
support. The Automatic Train Stop considered here is used to check whether
a driver controls the train. In the ATS system, a light signal is turned on
every 60 seconds to check whether a driver controls the train. If the driver
fails to acknowledge the signal within 6 seconds, a sound signal is turned on.
Then, if the driver does not disactivate the signals within 3 seconds, using
the acknowledge button, the emergency brakes are applied to stop the train
automatically. An RTCP-net (Petri net) model of such a system is presented
in [28]. To verify the Petri net model of the ATS system, it was necessary to
add places and transitions that simulate the driver behaviour.

The default time unit in Alvis is 1 millisecond. However, due to the speci�c
features of the system under consideration, we will use 1 second as the basic
time unit. As a result of this assumption, we will omit durations of steps
execution. A single step in this example takes about 1 or 2 milliseconds, so
they do not in�uence the system properties.

We start with a model that contains only one agent called ATS . Other
elements: the cab console, timer, brake etc. are elements of our system envi-

4.2 ATS system example 33

ronment. The model is shown in Fig. 4.1. Comments contain the numbers of
steps.

environment {

in wakeup [] (map (60*) [0..]) durable;

in off [] [1..] signal;

out warning [0,1,2] [];

out brake [] [];

}

agent ATS {

loop { -- 1

in wakeup; -- 2

out warning 1; -- 3

select { -- 4

alt (ready [in(off)]) {

in off; -- 5

out warning 0; } -- 6

alt(delay 6) {

out warning 2; -- 7

select { -- 8

alt (ready [in(off)]) {

in off; -- 9

out warning 0; } -- 10

alt (delay 3) {

out brake; -- 11

exit; } -- 12

} } } } }

Fig. 4.1. ATS system � model 1

In the considered example all ports are border ones. However, the model is
already suitable to verify properties of the ATS agent. The off signal can be
generated any one second, but it does not in�uence the system behaviour, if
it is generated before the system is waked up. It is possible to specify the off
port behaviour in a more sophisticated way using Haskell functions as shown
in Listing 4.4. In the presented example, the off signal may be generated only
for 10 s after the wakeup signal.

34 4 Speci�cation of model environment

offlist p0 p1 p2 n k

| k <= n = (p1 + k * p2)

: offlist p0 p1 p2 n (k + 1)

| otherwise = offlist p0 (p0 + p1) p2 n 1

offlist ' = offlist 60000 61000 1000 10 1

Listing 4.4. Haskell function for generation time points list

In the second approach, we decided to treat the driver console as a part
of the embedded system. Moreover, the system contains a timer that wakes it
up every 60 s. The model is shown in Fig. 4.2.

environment {

in off [] signal;

out brake [] []; }

agent ATS {

-- ...

}

agent Timer {

loop (every 6000) {

out tick; }

}

agent Console {

state ::Int = 0;

proc setState { in setState state ; }

}

Fig. 4.2. ATS system � model 2

The second model contains only two border ports. In spite of the fact
that two new agents have been included into the model, the de�nition of the
ATS agent is still the same. The driver console is represented by the Console
passive agent with a single procedure used to set the console state. The Timer

4.2 ATS system example 35

agent is an active one with a loop every statement. The agent sends the tick
signal every 60 s.

The presented examples of ATS systems allow one to �nd out the usefulness
of the Alvis language for the design of embedded systems. The possibility
of moving borders of an embedded system environment allows designers to
develop a system increasing the number of its details in subsequent stages.
Thus, we can design a small part of the target system and test its behaviour
or verify it in a formal way. Then, a more detailed version of such a system
can be designed and we check whether the new version is compatible with the
old one.

On the other hand, the presented approach can be useful for veri�cation
of more complex models with a very big state space. We can divide such a
model into a set of subsystems and verify each of them separately. For each
subsystem, we treat other parts of the model as the subsystem environment.

5

Formal description of models

This chapter provides formal de�nitions of basic Alvis concepts like non-
hierarchical and hierarchical communication diagrams, syntax and analysis
operations etc. At the end of the chapter, a formal de�nition of an Alvis
model is given. All these de�nitions are necessary to provide formal semantic
for all Alvis statements in the following chapters.

5.1 Non-hierarchical diagrams

Let A denote an Alvis model (with a non-hierarchical communication dia-
gram). Graphical and code layers of a model are closely related one to the
other. Each active and passive agent from a communication diagram is de-
scribed in the corresponding code layer and vice versa.

An agent can communicate with other agents through ports. Each agent
port must have a unique identi�er (name) assigned, but ports of di�erent
agents may have the same identi�er assigned. Thus, each port in a model is
identi�ed using its name and its agent name. For simplicity, we will used the
so-called dot notation � X.p denotes port p of agent X.

Let P(X) denote the set of ports of an agent X. We can distinguish the
following subsets of the set P(X):

• Pborder(X) denotes the set of border ports of agent X i.e. ports that are
speci�ed in the environment statement.

• Pinternal(X) = P(X) − Pborder(X) denotes the set of internal ports of
agent X.

• Pin(X) denotes the set of input ports of agent X. An input border port is
a border port with at least one in speci�cation. An input internal port is
an internal port with at least one one-way connection leading to this port
or with at least one two-way connection.

• Pout(X) denotes the set of output ports of agent X. An output border port
is a border port with at least one out speci�cation. An output internal port

38 5 Formal description of models

is an internal port with at least one one-way connection leading from this
port or with at least one two-way connection.

• Punc(X) = Pinternal(X) − (Pin(X) ∪ Pout(X)) denotes the set of uncon-
nected ports.

• Pproc(X) ⊆ Pinternal(X) denotes the set of procedure ports of agent X
(for passive agents only) i.e. ports with de�ned the proc statement (names
of such ports are treated as names of procedures).

For a set of agents W we de�ne: P(W) =
∑
X∈W P(X), Pborder(W) =∑

X∈W Pborder(X), etc. Moreover, let P denote the set of all model ports,
Pborder denote the set of all model border ports, etc.

Let N (X) denote the set of ports names of agent X, and N (W) =∑
X∈W N (X). For example, if a diagram contains only agents: X1 with port

p and X2 also with port p, then P = {X1.p,X2.p}, and N (P) = {p}.

De�nition 5.1. A Non-hierarchical communication diagram is a triple D =
(A, C, σ), where:
• A = {X1, . . . , Xn} is the set of agents consisting of two disjoint sets,
AA, AP such that A = AA ∪ AP , containing active and passive agents
respectively.

• C ⊆ P × P is the communication relation, such that

∀X ∈ A : (P(X)× P(X)) ∩ C = ∅, (5.1)

(Pborder × P) ∩ C = ∅ ∧ (P × Pborder) ∩ C = ∅, (5.2)

Pproc ∩ Pin ∩ Pout = ∅, (5.3)

(p, q) ∈ (P(AA)× P(AP)) ∩ C ⇒ q ∈ Pproc, (5.4)

(p, q) ∈ (P(AP)× P(AA)) ∩ C ⇒ p ∈ Pproc, (5.5)

(p, q) ∈ (P(AP)× P(AP)) ∩ C ⇒
⇒ (p ∈ Pproc ∧ q /∈ Pproc) ∨ (q ∈ Pproc ∧ p /∈ Pproc) . (5.6)

Each element of the relation C is called a connection or a communication
channel.

• σ : AA → {False,True} is the start function that points out initially acti-
vated agents.

Let us focus on the conditions from the abobe de�nition.

• (5.1) � A connection cannot be de�ned between two ports of the same
agent.

• (5.2) � Border ports cannot be connected with any ports.
• (5.3) � Procedure ports are either input or output ones.
• (5.4), (5.5) � A connection between an active and a passive agent must be

a procedure call.

0 We will use two notations to denote ports in equations. A single lower-case letter
e.g. p denotes a port p of some agent. If it is necessary to point out both a port
name and agent name, the dot notation will be used e.g. X.p.

5.2 Hierarchical communication diagrams 39

• (5.6) � A connection between two passive agents must a procedure call
from a non-procedure port. From conditions (5.3)-(5.6) it follows that any
connection with a passive agent must be one-way connection.

The start function σ makes possible delaying activation of some agents �
We can make them active later with the start statement. Names of agents
that are initially activated (represent running processes) are underlined in a
communication diagram.

Let us focus on the ATS system model shown in Fig. 4.2. The model
elements are de�ned as follows:

• AA = {ATS ,Timer},
• AP = {Console},
• Pborder = {brake, off },
• Pinternal = {setState, tick ,wakeup,warning},
• Pin = {off , setState,wakeup},
• Pout = {brake,warning},
• Pproc = {setState},
• C = {(Timer .tick ,ATS .wakeup), (ATS .warning ,Console.setState)},
• σ(ATS) = σ(Timer) = True.

5.2 Hierarchical communication diagrams

A communication diagram can be treated as a module and represented by a
single agent at the higher level. Thus, communication diagrams support both
top-down and bottom-up approaches. For the e�ective modelling Alvis com-
munication diagrams enable distributing parts of a diagram across multiple
subdiagrams called pages. Pages are combined using the so-called substitution
mechanism. An agent at one level can be replaced by a page on the lower level,
which usually gives a more precise and detailed description of the subsystem
represented by the agent. Such a substituted agent is called hierarchical one.
All ports of a hierarchical agent must appear on the corresponding subpage.
A hierarchical communication diagram consists of a set of pages.

Hierarchical agents represent submodels. They are not de�ned in the model
code layer. From the model veri�cation point of view, the equivalent �at com-
munication diagram is taken under consideration. We divide ports of hierar-
chical agents into three subsets based on the connections de�ned in the model:
Pin(X), Pout(X), and Punc(X). Ports of hierarchical agents cannot be de�ned
as border or procedure ones.

De�nition 5.2. A page in a hierarchical communication diagram is a triple
Di = (Ai, Ci, σi), where:

• Ai = {Xi
1, . . . , X

i
n} is the set of agents with subsets of active agents AiA,

passive agents AiP , and hierarchical agents AiH , such that Ai = AiA∪AiP ∪
AiH , and AiA, AiP , AiH are pairwise disjoint.

40 5 Formal description of models

• Ci ⊆ Pi × Pi, where Pi =
∑
X∈Ai P(X), is the communication relation,

such that:

∀X ∈ Ai : (P(X)× P(X)) ∩ Ci = ∅, (5.7)(
Piborder × Pi

)
∩ Ci = ∅ ∧

(
Pi × Piborder

)
∩ Ci = ∅, (5.8)

Piproc ∩ Piin ∩ Piout = ∅, (5.9)

Piproc ∩ P(AiH) = ∅ ∧ Piborder ∩ P(AiH) = ∅, (5.10)

(p, q) ∈
(
P(AiA)× P(AiP)

)
∩ Ci ⇒ q ∈ Piproc, (5.11)

(p, q) ∈
(
P(AiP)× P(AiA)

)
∩ Ci ⇒ p ∈ Piproc, (5.12)

(p, q) ∈
(
P(AiP)× P(AiP)

)
∩ Ci ⇒

⇒
(
p ∈ Piproc ∧ q /∈ Piproc

)
∨
(
q ∈ Piproc ∧ p /∈ Piproc

)
, (5.13)

(p, q) ∈
(
P(AiP)× P(AiH)

)
∩ Ci ⇒ (q, p) /∈ Ci, (5.14)

(p, q) ∈
(
P(AiH)× P(AiP)

)
∩ Ci ⇒ (q, p) /∈ Ci. (5.15)

Each element of the relation Ci is called a connection or a communication
channel.

• σi : AiA → {False,True} is the start function that points out initially ac-
tivated agents.

Let us focus on the conditions from the abobe de�nition.

• (5.7) � A connection cannot be de�ned between two ports of the same
agent.

• (5.8) � Border ports cannot be connected with any ports.
• (5.9) � Procedure ports are either input or output ones.
• (5.10) � Hierarchical agents cannot have border or procedure ports.
• (5.11), (5.12) � A connection between an active and a passive agent must

be a procedure call.
• (5.13) � A connection between two passive agents must be a procedure call

from a non-procedure port.
• (5.14), (5.15) � A connection between a hierarchical and a passive agent

must be a one-way connection.

The above de�nition treats hierarchical agents almost like active ones.
However, connections with ports of hierarchical agents can make some sub-
stitution of pages illegal, i.e. after the transformation of a hierarchical dia-
gram into the equivalent �at one, all connections must satisfy the conditions
(5.1)-(5.6).

Let a hierarchical agent X ∈ AiH be given and let PXjoin(Dj) denotes the

set of all join ports of the page Dj with respect to X, i.e.

PXjoin(Dj) = {Xj
k.p ∈ P(D

j) : p ∈ N (P(X))}. (5.16)

In other words, PXjoin(Dj) is the set of all ports from the page Dj that names
are the same as those of the hierarchical agent X.

5.2 Hierarchical communication diagrams 41

An attempt to assign a page Dj to an hierarchical agent X results in the
following set of hierarchical communication channels:

CjX = {(Xi
k.p,X

j
m.q) : (X

i
k.p,X.q) ∈ Ci} ∪

∪ {(Xj
m.q,X

i
k.p) : (X.q,X

i
k.p) ∈ Ci}

(5.17)

De�nition 5.3. Let a hierarchical agent X ∈ AiH and a page Dj = (Aj , Cj , σj)
be given. Agent X and page Dj satisfy the simple substitution requirements,
i�

card(P(X)) = card(PXjoin(Dj)), (5.18)

PXjoin(Dj) ⊆ Pjunc, (5.19)

and the page D′ = (A′, C′, σ′), where

• A′ = Ai ∪ Aj − {X},
• C′ = Ci ∪ Cj ∪ CjX − {(p, q) : p ∈ P(X) ∨ q ∈ P(X)},

• σ′(Y) =

{
σi(Y) : Y ∈ AiA
σj(Y) : Y ∈ AjA

,

satis�es all conditions from De�nition 5.2.
If instead of the condition (5.18), the following condition is satis�ed:

card(P(X)) < card(PXjoin(Dj)), (5.20)

we say that agent X and page Dj satisfy the extended substitution require-
ments.

We will consider a binding function π that maps ports of a hierarchical
agent to the join ports of the corresponding page. In the case of a simple
substitution, the binding function π is a bijection. On the other hand, in the
case of an extended substitution, one port of a hierarhical agent may have
assigned more than one join port on the subpage.

Let us recall the de�nition of a labelled directed graph.

De�nition 5.4. A labelled directed graph is a triple G = (V,E,L), where:

• V is the set of nodes.
• L is the set of edge labels.
• E ⊆ V × L× V is the set of edges.

De�nition 5.5. A hierarchical communication diagram is a pair H = (D, γ),
where:

• D = {D1, . . . , Dk} is the set of pages of the hierarchical communication
diagram, such that sets of agents Ai (i = 1, . . . , k) are pairwise disjoint.

• γ : AH → D, where AH =
⋃
i=1,...,kAiH , is the substitution function, such

that:

42 5 Formal description of models

1. γ is an injection.
2. For any Xi

j ∈ AH , Xi
j and γ(X

i
j) satisfy the requirements of the simple

or extended substitution.
3. Labelled directed graph G = (D, E,AH) where (Di, Xi

k, D
j) ∈ E i�

γ(Xi
k) = Dj is a tree or a forest.

The labelled directed graph de�ned above is called a page hierarchy graph.
Nodes of such a graph represent pages, while edges (labelled with names of
hierarchical agents) represent the substitution function γ. Each edge repre-
sents the page to which belongs the hierarchical agent (used as label) and the
subpage associated with the agent.

We assume that system de�nition starts from a page or a set of pages, thus
the number of pages must be greater than the number of hierarchical agents.
Formally pages from the set D − γ(AH) are called primary pages, They are
roots of trees that constitute a page hierarchy graph.

Following symbols are valid for hierarchical communication diagrams:

• AA =
⋃
i=1,...,kAiA,

• AP =
⋃
i=1,...,kAiP ,

• A = AA ∪ AP ,
• σ : AA → {False,True} and ∀i = 1, . . . , k ∀Xi

j ∈ AA : σ(Xi
j) = σi(Xi

j),

• C =
⋃
i=1,...,k Ci ∪

⋃
X∈AH∧γ(X)=Dj CjX .

An example of the simple substitution is shown in Fig. 2.5 and 2.6. The
page shown in Fig. 2.6 is assigned to the agent B. The following equalities
hold.

• P(B) = {B.d,B.e,B.f}
• PBjoin(D2) = {D.d,E.e, F.f}
• N (P(B)) = {d, e, f} = N (PBjoin(D2))

Of course, the binding function binds ports with the same names.
An example of the extended substitution is shown in Fig. 2.5, 2.9 and 2.10.

The page hierarchy graph for the readers-writers model is shown in Fig. 2.11.
Both substitions used in the model are the extended ones. Let focus on the
Readers agent. The following equalities hold:

• P(Readers) = {Readers.r_in,Readers.r_out}
• PReaders

join (pReaders) = {Reader1.r_in,Reader1.r_out,Reader2.r_in,
Reader2.r_out,Reader3.r_in,Reader3.r_out,Reader4.r_in,
Reader4.r_out}

• N (P(Readers)) = {r_in, r_out} = N (PReaders
join (pReaders))

In this case, the binding function π is de�ned as follows:

• π(Readers.r_in) = {Reader1.r_in, . . . , Reader4.r_in}
• π(Readers.r_out) = {Reader1.r_out, . . . , Reader4.r_out}

5.3 Hierarchy elimination 43

Instead of local binding functions, we can consider one global function π:

π :
⋃

X∈AH

P(X)→ 2P . (5.21)

The function π satis�es the following conditions:

∀X ∈ AH ∀X.p ∈ P(X) : π(X.p) ⊆ PXjoin(γ(X)), (5.22)

∀X ∈ AH ∀X.p ∈ P(X) : N (π(X.p)) = {p}. (5.23)

If a communication diagram contains only simple substitutions, then the
function (5.21) takes the simpli�ed form:

π :
⋃

X∈AH

P(X)→ P, (5.24)

and the condition (5.22):

∀X ∈ AH ∀X.p ∈ P(X) : π(X.p) ∈ PXjoin(γ(X)). (5.25)

It can be useful to designate relations between hierarchical agent and
agents belonging to its subpage.

De�nition 5.6. Let X ∈ AH and a page Di such that γ(X) = Di be given.
For any agent Y ∈ Ai we say that X is directly hierarchically dependent on
Y and we will denote it as X � Y .

5.3 Hierarchy elimination

The possibility of substitution of an abstract description of an agent by a
more detailed one represented by a submodel (subpage) it is very common in
a system design. It is however di�cult when we would like to understand (or
verify) a behaviour of a whole system, associations among their components
and so on. Thus, in this section we introduce the �at (non-hierarchical) ab-
straction of a system represented by its hierarchical communication diagram.
In this representation we will use only agents and connections among them
inherited from the hierarchical communication diagram.

De�nition 5.7. For any two agents X ∈ AH and Y ∈ A, X is said to be
hierarchically dependent on Y , denoted as X � Y , i� X = Y1 � . . . � Yk = Y
for some Y1, . . . , Yn ∈ A.

De�nition 5.8. A �at representation of a communication diagram H =
(D, γ) is the triple (F , C′, σ′) such that:

1. ∀X,Y ∈ F ⊆ A : X 6= Y ⇒ X � Y ,
2. ∀X ∈ A−AH ∃Y ∈ F : Y � X,

44 5 Formal description of models

3. C′ = {(X.p, Y.q) ∈ C : X,Y ∈ F},
4. σ′ = σ|AA∩F .

It is easy to check that the set of primary pages is a �at representation of
a system represented by a hierarchical communication diagram.

We can move from one �at system representation to another, more detailed
one, using the analysis operation.

De�nition 5.9. Let H be a hierarchical communication diagram, (F , C′, σ′)
be a �at representation of H, X ∈ AH ∩ F and γ(X) = Di = (Ai, Ci, σi).
Analysis of the �at representation (F , C′, σ′) of the hierarchical diagram H in
context of X is the �at representation (F∗, C∗, σ∗) (denoted AN(H,F , X)),
such that:

1. F∗ = F − {X} ∪ Ai,
2. C∗ = {(Z.p, Z ′.q) ∈ C : Z,Z ′ ∈ F∗},
3. σ∗ = σ|AA∩F∗ .

De�nition 5.10. Let H be a hierarchical communication diagram, (F , C′, σ′)
be a �at representation of H, Y ∈ F and ∃X ∈ AH such that X � Y and
γ(X) = Di = (Ai, Ci, σi). Synthesis of the �at representation (F , C′, σ′) of the
hierarchical diagram H in context of Y is the �at representation (F∗, C∗, σ∗)
(denoted as SN(H,F , Y)) such that:

1. F∗ = F −Ai ∪ {X},
2. C∗ = {(Z.p, Z ′.q) ∈ C : Z,Z ′ ∈ F∗},
3. σ∗ = σ|AA∩F∗ .

Page D′ (presented in Fig. 2.7) is a �at representation of the hierarchi-
cal system H de�ned by pages D1 and D2 (presented in Fig. 2.5 and 2.6)
with the simple substitution mechanism. Flat representation generated by
the AN(H,D1, B) analysis operation (Fig. 2.7) is generated by the following
algorithm.

1. Remove the agent B from the page D1 with all its connections.
2. Move the contents of the page D2 onto the page D1.
3. Add connections � If after removing of the agent B, from the page D1, it

has been removed a connection between ports B.a and X1
i .p, then we add

a connection between ports X1
i .p and π(B.a) with the same direction as

the removed one.

Page System (presented in Fig. 2.8) as a primary page is a �at representa-
tion of the hierarchical graph presented in Fig. 2.11 with pages Readers and
Writers (presented appropriately in Fig. 2.9 and Fig. 2.10) with the extended
substitution mechanism. Flat representation generated by the composition of
the analysis operations AN(H,AN(H,System,Readers),Writers) is presented
in Fig. 2.12. This operation is supported by nearly the same algorithm as above
with one change (in the third step). If after removing of a hierarchical agent

5.4 Models 45

Xi
j , it has been removed a connection between ports Xi

j .p and X
i
n.q, then we

add similar connections between port Xi
n.q and all ports from the set π(Xi

j .p).

De�nition 5.11. A �at representation (F , C′, σ′) is called the maximal �at
representation i�

∀X ∈ A ∃Y ∈ F : X � Y. (5.26)

Such a maximal �at representation does not contain hierarchical agents.

5.4 Models

Formally, we de�ne an Alvis model as a triple with a hierarchical communi-
cation diagram as shown in De�nition 5.12.

De�nition 5.12. An Alvis model is a triple A = (H,B,ϕ), where:

• H = (D, γ) is a hierarchical communication diagram,
• B is a syntactically correct code layer,
• ϕ is a system layer.

Moreover, each non-hierarchical agent X belonging to the diagram H must be
de�ned in the code layer, and each agent de�ned in the code layer must belong
to the diagram.

For an Alvis model A = (H,B,ϕ), its equivalent non-hierarchical model
is a triple A = (D,B,ϕ), where D is the maximal �at representation of H.

It should be underlined that a syntactically correct code layer means also
that only input ports may be used as arguments of in statements, and only
output ports may be used as arguments of in statements.

Let us focus on system layers. The system layer is the prede�ned one
and depends on the model running environment, i.e. the hardware and/or
operating system. The layer is necessary for a model simulation and an LTS
graph generation. Moreover, the layer provides some functions that are useful
for the implementation of scheduling algorithms or for retrieving information
about other agents states. Two system layers are considered in this book called
α0 and α1 ones.

The α0 system layer makes Alvis a formal modelling language for concur-
rent systems. The layer is based on the following assumptions:

• Each active agent has access to its own processor and performs its state-
ments as soon as possible.

• The prede�ned α0 scheduler function is called after each statement auto-
matically and makes agents running as soon as possible.

46 5 Formal description of models

• In case of con�icts, agents priorities are taken under consideration. If two or
more agents with the same highest priority compete for the same resources,
the system works indeterministically.
A con�ict is a state when two or more agents try to call a procedure of
the same passive agent or two or more active agents try to communicate
with the same active agent.

The semantic of Alvis models with α0 system layer is considered in Chapter 6.

The α1 layer is based on the following assumptions:

• All active agents share the same processor.
• The prede�ned α1 scheduler function is called after each statement auto-

matically and makes agents running as soon as possible.

We can consider di�erent α1 system layers that di�er about the scheduling
algorithm. α1 system layers are the most suitable ones for embedded systems.
The semantic of Alvis models with α1 system layers is considered in Chapter 6.

6

Models with α0 system layer

The α0 system layer is the most universal one and makes Alvis similar to
other formal languages like Petri nets, process algebras, time automata, etc.
This chapter focuses on untimed version of Alvis models with α0 system layer.
This �avour of the Alvis language is suitable for modelling concurrent systems.
Moreover, it is a good starting point for more complex considerations.

6.1 Code layer for untimed models

The Alvis language contains three statements that use time explicitly: delay,
loop every and select with delay branches. These statements are forbidden in
untimed models. Untimed models are also not allowed to use the environment
statement thus cli and sti statements are not taken into considerations. On
the other hand, if every active agent has access to its own processor then
it is not necessary to consider critical sections or the jump far statement (to
transfers the control to another agent). The set of allowed statements for Alvis
untimed models with α0 system layer is given in Table 6.1.

6.2 Agents state

As it was shown in Chapter 5, one can consider the maximal �at representation
of a communication diagram instead of a hierarchical model. Thus, from now
on, we will consider only A = (D,B, α0) models. To de�ne a state of an Alvis
model, we need to de�ne a state on a single agent.

De�nition 6.1. A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pv(X)), (6.1)

where am(X), pc(X), ci(X) and pv(X) denote mode, program counter, context
information list and parameters values of the agent X respectively.

48 6 Models with α0 system layer

Table 6.1. Alvis statements allowed in untimed models with α0 system layer

Statement Description

exec x = expression Evaluates the expression and assigns the result to the
parameter; the exec keyword can be omitted.

exit Terminates an active agent or a passive agent proce-
dure.

if (g1) {...} Conditional statement.
elseif (g2) {...}

elseif (g3) {...}

...

else {...}

in p Collects a signal/value through port p.
in p x

jump label Transfers the control to the line of code identi�ed with
the label.

loop {...} In�nite loop.
loop (g) {...} Repeats execution of the contents while the guard if

satis�ed..

null Empty statement.

out p Sends a signal/value through the port p.
out p x

proc (g) p {...} De�nes the procedure for port p of a passive agent. The
guard is optional.

select { Selects one of alternative choices.
alt (g1) {...}

alt (g2) {...}

alt (g3) {...}

...

}

start A Starts the agent A if it is in the Init state, otherwise
do nothing.

All possible modes and transitions among them are shown in Fig. 6.1.

�nished � The mode means that an agent has �nished its work or it has been
terminated using the exit statement.

init � This is the default mode for agents that are inactive in the initial state.
An agent can be activated by another one with the start statement.

running � The mode means that an agent is performing one of its statements.
taken � The mode means that one of the passive agent procedures has been

called and the agent is executing it.
waiting � For passive agents, the mode means that the corresponding agent is

inactive and waits for another agent to call one of its accessible procedures.
For active agents, the mode means that the corresponding agent is waiting
either for a communication with another active agent, or for a currently
inaccessible procedure of a passive agent.

6.2 Agents state 49

running waiting

initfinished

a) b)
waiting taken

Fig. 6.1. Possible transitions among modes: a) active agents, b) passive agents.

The program counter points out the current statement of an agent i.e. the
next statement to be executed or the statement that has been executed by
an agent but needs a feedback from another agent to be completed (e.g. a
communication between two active agents). Relationships between the mode
and the program counter of an agent are shown in Table 6.2.

• We say that pc(X) points out an exec (exit, jump, null, start) statement
i� the next statement to be executed is an exec (exit, jump, null, start)
statement.

• We say that pc(X) points out an if statement i� the next statement to be
executed is the evaluating of the guard and possibly entering one of the if
statement alternatives.

• We say that pc(X) points out a loop statement i� the next statement to
be executed is the evaluating of the guard (if any) and possibly entering
the loop statement.

• We say that pc(X) points out a select statement i� the next statement
to be executed is entering the select statement and possibly one of its
branches.

• We say that pc(X) points out an in or out statement i� the next statement
to be executed is an in or out statement or the last executed statement is
in or out and the agent is waiting for the communication to be completed
(either with an active or a passive agent).

Table 6.2. Relationships between the mode and the program counter of an agent

am(X) pc(X)

�nished 0

init 0

running current statement

taken current statement of the called procedure

waiting (active agent) current statement

waiting (passive agent) 0

The context information list contains additional information about the
current state of an agent e.g. if an agent is the waiting mode, ci contains

50 6 Models with α0 system layer

information about events the agent is waiting for. Possible entries put into ci
lists are given in Table 6.3. If an agent is the init or �nished mode, its context
information list is empty.

Table 6.3. Relationships between the mode and the context information list of an
agent

agent X am(X) ci(X) entry description

active running/
waiting

proc(Y.b, a) X has called the Y.b procedure via port a and this
procedure is being executed in the X agent context

active waiting in(a),
in(a|T)

X waits for a communication via port X.a (X.a is
the input port for this communication); T is the type
of the expected value

out(a),
out(a|T)

X waits for a communication via port X.a (X.a is
the output port for this communication)

guard X waits for an open branch of a select statement

passive taken proc(Y.b, a) X has called the Y.b procedure via port a and this
procedure is being executed in the same context as
the X procedure

guard X waits for an open branch of a select statement

passive waiting in(a) input procedure X.a is accessible
out(a) output procedure X.a is accessible

The parameters values list contains the current values of the agent param-
eters.

6.3 Model state

A model state is sequence (list) of all agents states.

De�nition 6.2. A state of a model A = (D,B,ϕ), where D = (A, C, σ) and
A = {X1, . . . , Xn} is a tuple

S = (S(X1), . . . , S(Xn)). (6.2)

De�nition 6.3. The initial state of a model A = (D,B, α0) is a tuple S0 as
given in (6.2), where:

• am(X) = running for any active agent X such that σ(X) = True;
• am(X) = init for any active agent X such that σ(X) = False;
• am(X) = waiting for any passive agent X;
• pc(X) = 1 for any active agent X in the running mode and pc(X) = 0 for

other agents.

6.3 Model state 51

• ci(X) = [] for any active agent X;
• For any passive agent X, ci(X) contains names of all accessible ports of

X (i.e. names of all accessible procedures) together with the direction of
parameters transfer, e.g. in(a), out(b), etc.

• For any agent X, pv(X) contains X parameters with their initial values.

Steps performed by a model are described using the transition idea. The set
of all possible transitions for the considered Alvis models is given in Table 6.4.

Table 6.4. Set of transitions

Symbol Description

1 texec performs an evaluation and assignment

2 texit terminates an agent or a procedure

3 tif enters an if statement

4 tin performs communication (input side)

5 tjump jumps to a label

6 tloop enters a while or in�nite loop

7 tnull performs an empty statement

8 tout performs communication (output side)

9 tselect enters a select statement

10 tstart starts an inactive agent

11 tio performs communication (both sides)

To de�ne formally results of transitions execution, we have to provide some
mechanisms for code analysis. Let us de�ne the following symbols.

• B(X) � the X agent code de�nition (the agent block);
• card(B(X)) � the number of steps in B(X);
• Bi(X) for i = 1, . . . , card(B(X)) � the name of the agent X i-th step,

Bi(X) ∈ {exec, exit , if , in, jump, loop,null , out , select , start}.
• N (t) � the name of the transition t (possible values the same as for steps).
• If necessary am, pc, ci, pv will be indicated by indexes S, S′ etc. to point

out the state they refer to.

The set of all transitions available for a particular model will be denoted
by T . For example, the tstart is available for a model A = (D,B, α0) iif
∃X ∈ A,∃i ∈ {1, . . . , card(B(X))} : Bi(X) = start .

Let us focus on the step idea. It is necessary to distinguish between code
statements and steps. More statements e.g. exec, exit , in, etc. are single-step
statements. On the other hand, if , loop and select are multi-step statements.
We use recursion to count the number of steps for multi-step statements. For
each of these statements, the �rst step enters the statement interior. Then,
we count steps of statements put inside curly brackets. For a given statement
s, let stepno(s) denote the number of the step related to s. For multi-step

52 6 Models with α0 system layer

agent A {

i :: Int = 0;

loop { -- 1

select { -- 2

alt (i == 0) { in p; i = 1;} -- 3, 4

alt (i == 1) { in q; i = 0;} -- 5, 6

}

if(i == 1) { out p;} -- 7, 8

else { null; } -- 9

}

}

Listing 6.1. Steps counting in Alvis code

statements, stepno(s) denotes the number of the step connected with entering
the statement interior.

Let us consider the piece of code shown in Listing 6.1. It contains 9 steps.
The steps number are put inside comments. For example, the step 7 denotes
entering the if statement, while the step 8 denotes the out statement. For
passive agents, only statements inside procedures (i.e. inside curly brackets)
are taken into consideration while counting steps.

To simplify the formal description of transitions, we need a function that
determines the next program counter for an agent. For the purposes of this
discussion block means a piece of a code inside curly brackets and last block
statement means that the statement is the last one in the block and is followed
by the closing curly bracket. Depending on the surrounding statement we will
consider: if blocks (any of the blocks after if, elseif or else clauses), loop blocks,
branch blocks (alt clauses), procedure blocks and agent blocks (a main agent's
block).

Let us focus on code statements �rst. The nextst function (next statement)
is used to determine the successor statement for a given one. The function
returns empty statement if there is no a successor statement for the considered
one. The number of the empty statement is equal to 0. This recursive function
is based on the following rules:

1. If s is a jump statement then nextst(s) is the �rst statement after the
jump statement label.

2. If s is an exit statement then nextst(s) is the empty statement.
3. If s ∈ {exec, if , in, loop,null , out , select , start} and s is not the last block

statement then nextst(s) is the statement that follows s in the code layer.
4. If s ∈ {exec, if , in, loop,null , out , select , start} and s is the last main block

statement or the last procedure block then nextst(s) is the empty state-
ment.

5. If s ∈ {exec, if , in, loop,null , out , select , start} and s is the last if (loop,
select) block statement then nextst(s) = nextst(s′), where s′ is the sur-
rounding if (loop, select) statement.

6.3 Model state 53

A graph representation of the nextst function for the code presented in
Listing 6.1 is shown in Fig. 6.2. For example, the next statement for the exec
statement number 6 is the if statement (statement number 7).

Fig. 6.2. Graph representation of the nextst function for the code presented in
Listing 6.1.

A similar nextpc (next program counter) function determines the number
of the next step (the next program counter for an agent). Similarly, we use
concepts like last block step, last if block step, etc. to point out the last step
inside a given code block. It is possible that there is no the last main block
step e.g. if an agent behaviour is de�ned with an in�nite loop (see Listing 6.1).

The nextpc function takes an agent X state as an argument and returns an
integer in the range of 0 to card(B(X)). The function satis�es the following
requirements for the current step t:

1. If t = exit then nextpc(S(X)) = 0.
2. If t ∈ {exec, in,null , out , start} then:
• if t is not the last block step then:

nextpc(S(X)) = pcS(X) + 1;
• if t is the last main block step or the last procedure block step then

nextpc(S(X)) = 0;
• if t is the last loop block step then:

nextpc(S(X)) = stepno(s),
where s is the loop statement;

• if t is the last branch block step then:
nextpc(S(X)) = stepno(nextst(s)),
where s is the surrounding select statement.

• if t is the last if block step then:
nextpc(S(X)) = stepno(nextst(s)),
where s is the surrounding if statement.

3. If t = jump step then nextpc(S(X)) returns the number of the �rst step
after the corresponding label.

4. If t = if then:

54 6 Models with α0 system layer

• nextpc(S(X)) is equal to the number of the �rst step inside the chosen
if block, if such a block has been chosen;

• nextpc(S(X)) = stepno(nextst(s)), where s is the if statement other-
wise.

5. If t = loop then:
• if the loop guard is satis�ed or for an in�nite loop nextpc(S(X)) =

pcS(X) + 1;
• if the loop guard is not satis�ed then:

nextpc(S(X)) = stepno(nextst(s)),
where s is the loop statement.

6. If t = select then nextpc(S(X)) returns the number of the �rst step inside
the chosen branch block.

A graph representation of the nextpc function for the code presented in
Listing 6.1 is shown in Fig. 6.3.

Fig. 6.3. Graph representation of the nextpc function for the code presented in
Listing 6.1.

To describe a ci list modi�cations we will use the following operators:

• e ∈ ci � returns true if the element e belongs to the ci list and false
otherwise.

• ci⊕ e � if e /∈ ci then adds the element e at the end of the list.
• ci	 e � if e ∈ ci then removes the element e from the list.

6.4 Transitions 55

6.4 Transitions

We will consider behaviour of Alvis models at the level of detail of single steps.
Each of transitions presented in Table 6.4 realises a single step. Each step is
realised in the context of one active agent. Also procedures of passive agents
are realised in context of active agents that called them. Firstly, we will focus
on active agents only.

De�nition 6.4. Assume A = (D,B, α0) is an Alvis model with the current
state S = (S(X1), . . . , S(Xn)) and Xi ∈ AA. A transition t ∈ T is enable
in the state S with respect to Xi (denoted as S−t(X)→) i� the following
requirement holds:

am(Xi) = running ∧ Bpc(Xi)(Xi) = N (t). (6.3)

The fact that a transition t is enable in a state S with respect to an agent
X and the state S′ that is the result of executing t in S will be denoted by
S−t(X)→S′. If case of four transitions, an extended version of this notation
will be used:

• S−tstart(X,Y)→S′, where Y is the argument of the corresponding start
statement;

• S−tin(X.p, T)→S′, S−tout(X.p, T)→S′, where X.p is the port used for
the communication and T is the type of send/collected value. If necessary,
the special Empty type will be used to denote a valueless communication.

• S−tio(X.p, Y.q, T)→S′, where X.p and Y.q are the input and output ports
for the communication respectively and T is the type of the transferred
value.

This section describes the states that are results of executing all possi-
ble steps. We will limit the de�nitions to description of agents, which states
change. Agent, which states remain unchanged are omitted in the description.

Let pvS(X)|v=a denote the list of parameters values pvS(X), but with the
parameter v assigned to a new value a. If X ∈ AA, S−texec(X)→S′, and a
parameter v is assign a value a with the corresponding exec statement, then:

• S′(X) = (running,nextpc(S(X)), ciS(X), pvS(X)|v=a),
if nextpc(S(X)) 6= 0,

• S′(X) = (finished, 0, [], pvS′(X)), if nextpc(S(X)) = 0.

If X ∈ AA and S−texit(X)→S′, then:

• S′(X) = (finished, 0, [], pvS(X)),

If t ∈ {if , loop,null}, X ∈ AA and S−t(X)→S′ then:

• S′(X) = (running,nextpc(S(X)), ciS(X), pvS(X)),
if nextpc(S(X)) 6= 0.

• S′(X) = (finished, 0, [], pvS(X)), if nextpc(S(X)) = 0.

56 6 Models with α0 system layer

If X ∈ AA and S−tjump(X)→S′, then:

• S′(X) = (running, nextpc(S(X)), ciS(X), pvS(X)).

If X ∈ AA and S−tselect(X)→S′, then:

• If at least one branch of the statement is open then
S′(X) = (running, nextpc(S(X)), ciS(X), pvS(X)).

• If all branches are closed then
S′(Xi) = (waiting, pcS(Xi), ciS(X)⊕ guard, pvS(X)).

If X,Y ∈ AA and S−tstart(X,Y)→S′, then:

• S′(X) = (running,nextpc(S(X)), ciS(X), pvS(X)), if nextpc(S(X)) 6= 0.
• S′(X) = (finished, 0, [], pvS(X)), if nextpc(S(X)) = 0.
• If amS(Y) = init, then S′(Y) = (running, 1, [], pvS(Y)), otherwise

S′(Y) = S(Y).

Steps of passive agents are always considered in the context of an active
one. Thus, to de�ne enable transitions for passive agents, it is necessary to
consider behaviour of at least a pair of agents.

De�nition 6.5. Assume A = (D,B, α0) is an Alvis model with the current
state S = (S(X1), . . . , S(Xn)), X ∈ A and Y ∈ AP .

• We say that X is (directly) performing input procedure Y.q via its port
p i� (X.p, Y.q) ∈ C, proc(Y.q, p) ∈ ciS(X) and amS(Y) = taken.

• We say that X is (directly) performing output procedure Y.q via its port
p i� (Y.q,X.p) ∈ C, proc(Y.q, p) ∈ ciS(X) and amS(Y) = taken.

• We say that X is performing a procedure of an agent Y i� X is performing
an input or output procedure of Y via one of its ports.

• We say that X is indirectly performing input (output) procedure Y.q i�
exist X1

k , . . . , X
m
k , m > 0 such that X is performing a procedure of X1

k ,
X1
k is performing a procedure of X2

k , . . . , X
m
k is performing input (output)

procedure Y.q via one of its ports. For any passive agent Y performing one
of its procedures, context(Y) will denote the active agent X that directly
or indirectly performs the procedure.

De�nition 6.6. Assume A = (D,B, α0) is an Alvis model with the current
state S = (S(X1), . . . , S(Xn)) and X ∈ AA, Y ∈ AP are agents such that
X is directly or indirectly performing input (or output) procedure Y.q via its
port p. A transition t ∈ T is enable in the state S with respect to Y i� the
following requirement holds:

am(X) = running ∧ Bpc(Y)(Y) = N (t). (6.4)

Performing the in or out statements may in�uence more than one agent
state. Very often two agents connected with a communication channel perform

6.4 Transitions 57

their communication statements simultaneously. Such a communication is pos-
sible only if types of sending and collecting values are the same. Moreover, if
a few agents try to communicate at the same time, their priorities are taken
into consideration to determine pairs of agents that perform their commu-
nication statements simultaneously using the same communication channels.
Similarly, if an agents calls an available procedure of a passive agent, states
of two agents change (in spite of the fact that only one of them performs a
step).

Assume A = (D,B, α0) is an Alvis model with the current state S =
(S(X1), . . . , S(Xn)). Let type(X.p) denote the type of a procedure p argument
for a passive agent X (The Empty type can be used if none argument is used.)
In case of active agents, typeS(X.p) will denote the type of sent (expected)
argument for already performed out (in) step. Let us de�ne the following set
of pairs:

CommAA
S = {(X,Y) : X,Y ∈ AA ∧ S−tin(X.p, T)→ ∧

∧ S−tout(Y.q, T)→∧ (Y.q,X.p) ∈ C} (6.5)

CommAP
S = {(X,Y) : X ∈ AA ∧ Y ∈ AP ∧ S−tin(X.p, T)→ ∧

∧ am(Y) = waiting ∧ out(q) ∈ ci(Y) ∧
∧ type(Y.q) = T ∧ (Y.q,X.p) ∈ C} ∪
{(X,Y) : X ∈ AA ∧ Y ∈ AP ∧ S−tout(X.p, T)→ ∧
∧ am(Y) = waiting ∧ in(q) ∈ ci(Y) ∧
∧ type(Y.q) = T ∧ (X.p, Y.q) ∈ C} (6.6)

CommPP
S = {(X,Y) : X,Y ∈ AP ∧ S−tin(X.p, T)→ ∧

∧ am(Y) = waiting ∧ out(q) ∈ ci(Y) ∧
∧ type(Y.q) = T ∧ (Y.q,X.p) ∈ C} ∪
{(X,Y) : X,Y ∈ AP ∧ S−tout(X.p, T)→ ∧
∧ am(Y) = waiting ∧ in(q) ∈ ci(Y) ∧
∧ type(Y.q) = T ∧ (X.p, Y.q) ∈ C} (6.7)

CommF
S = {(X,Y) : X,Y ∈ AA ∧ S−tin(X.p, T)→ ∧
∧ am(Y) = waiting ∧ out(q) ∈ ci(Y) ∧
∧ typeS(Y.q) = T ∧ (Y.q,X.p) ∈ C} ∪
{(X,Y) : X,Y ∈ AA ∧ S−tout(X.p, T)→ ∧
∧ am(Y) = waiting ∧ in(q) ∈ ci(Y) ∧
∧ typeS(Y.q) = T ∧ (X.p, Y.q) ∈ C} (6.8)

Comm∗S = CommAA
S ∪ CommAP

S ∪ CommPP
S ∪ CommF

S (6.9)

Next, we divide all agents enable for communication in the state S into
two disjoint sets:

58 6 Models with α0 system layer

Comm2
S = {X ∈ A : ∃Y ∈ A ∧

∧
(
(X,Y) ∈ CommAA

S ∪ CommAP
S ∪ CommPP

S ∪ CommF
S ∨

∨ (Y,X) ∈ CommAA
S

)
} (6.10)

Comm1
S = {X ∈ A : (S−tin(X.p, T)→∨ S−tout(X.p, T)→) ∧X /∈ Comm2

S}
(6.11)

It's hardly possible that all agents from the set Comm1
S ∪ Comm2

S can
perform they communication steps simultaneously. Usually, agents compete
for the same agents and we can observe some con�icts in a model.

Fig. 6.4. Communication con�icts

Let us consider the communication diagram shown in Fig. 6.4. Suppose,
that for a considered state S the following conditions hold:

• S−tout(A.p, T)→,
• S−tout(B.p, T)→,

6.4 Transitions 59

• S−tin(C.p, T)→,
• amS(D) = running ,
• context(M) = D, S−tout(M.y, T)→,
• amS(K) = waiting , ciS(K) = [in(x), in(y)], type(K.x) = type(K.y) = T ,
• amS(L) = waiting , ciS(L) = [in(x), in(y)], type(L.x) = type(L.y) = T .

Thus, we have:

• CommAA
S = {(C,A)},

• CommAP
S = {(A,K), (B,K)},

• CommPP
S = {(M,K), (M,L)},

• CommF
S = ∅,

• Comm2
S = {A,B,C,M}

• Comm1
S = ∅.

It easy to see that there are con�icts in the state S: agents A and B
compete for the procedure K.x, and agents B and M compete for an access
to agent K.

Alvis uses a reverse priorities range. The code layer priorities range from
0 to 9, where 0 is the higher system priority. From the theoretical point of it
is more convenient to use the pr function de�ned as follows

pr(X) = 9− codePriority(X) (6.12)

Using di�erent agents priorities can eliminate most of potentials con�icts
in a model. For example, if pr(A) > pr(B) then there is no con�ict between
agents A and B, but it does not mean that agent A will perform the procedure
K.x. Selecting communication steps that can be perform in a given state is
based on Algorithm 1.

The output of the algorithm are two sets. The set Comm2
S

′ ⊂ Comm2
S

contains pair of agents representing communication steps that are to be per-

form in state S concurrently and concern pairs of agents. The set Comm1
S

′

contains agents that may perform communication steps on their own.
Let us go back to the model considered previously (see Fig. 6.4). Suppose,

the code priority for all active agents is equal to 0 and for all passive agents
to 1. Thus,

pr(A) = pr(B) = pr(C) = pr(D) = 9 (6.13)

pr(K) = pr(L) = pr(M) = 8 (6.14)

After the �rst performing of the while loop interior (see Algorithm 1) we
have:

• Comm ′S = {A,B,C},
• Comm ′′S = {(C,A), (A,K), (B,K)},
• CommS = {(C,A)},

60 6 Models with α0 system layer

Algorithm 1 Selecting concurrent communication steps

CommS = ∅
calculate CommAA

S , CommAP
S , CommPP

S , CommF
S , Comm∗S , Comm2

S , Comm1
S

. (see (6.5)-(6.11))
while Comm2

S 6= ∅ do
Comm ′S = {X ∈ Comm2

S : X has the highest priority in Comm2
S}

Comm ′′S = {(X,Y) ∈ Comm∗S : (X ∈ Comm ′S ∨ Y ∈ Comm ′S)}
take a pair (X ′, Y ′) ∈ Comm ′′S with the highest sum of agents' priorities

. if there is a few such pairs take one of them
CommS = CommS ∪ {(X ′, Y ′)}
CommAA

S = CommAA
S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}

CommAP
S = CommAP

S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}
CommPP

S = CommPP
S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}

CommF
S = CommF

S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}
calculate sets Comm∗S , Comm2

S . (see (6.9)-(6.10))
end while

calculate Comm1
S . (see 6.11)

Comm1
S
′
= Comm1

S − CommS

Comm2
S
′
= CommS

. the new set Comm1
S
′
may contain more elements than initially Comm1

S

• CommAA
S = ∅,

• CommAP
S = {(B,K)},

• CommPP
S = {(M,K), (M,L)},

• CommF
S = ∅,

• Comm∗S = {(B,K), (M,K), (M,L)},
• Comm2

S = {B,M}.

Then, after the second performing of the while loop interior we have:

• Comm ′S = {B},
• Comm ′′S = {(B,K)},
• CommS = {(C,A), (B,K)},
• CommAA

S = CommAP
S = ∅,

• CommPP
S = {(M,L)},

• CommF
S = ∅,

• Comm∗S = {(M,L)},
• Comm2

S = {M}.

Finally, we have Comm2
S

′
= {(C,A), (B,K), (M,L)} and Comm1

S

′
= ∅.

Suppose the priority function pr is de�ned as follows:

pr(A) = pr(B) = pr(C) = pr(D) = 8 (6.15)

pr(K) = pr(L) = pr(M) = 9 (6.16)

6.4 Transitions 61

Then, while the �rst performing of the while loop interior we have:

• Comm ′S = {M},
• Comm ′′S = {(M,K), (M,L)},

In such a case, there is an indeterministic choice between these two pairs. If
(M,L) is chosen, then we have next another indeterministic choice between

(A,K) and (B,K). Then, if (A,K) is chosen, we have �nally, Comm2
S

′
=

{(M,L), (A,K)} and Comm1
S

′
= {B,C}.

Now, let us focus on performing communication steps. There are following
possible cases:

1. (X,Y) ∈ Comm2
S

′ ∩ CommAA
S ,

2. (X,Y) ∈ Comm2
S

′ ∩ CommAP
S ,

3. (X,Y) ∈ Comm2
S

′ ∩ CommPP
S ,

4. (X,Y) ∈ Comm2
S

′ ∩ CommF
S ,

5. X ∈ Comm1
S

′ ∩ AA and S−tin(X.p, T)→S′,
6. X ∈ Comm1

S

′ ∩ AA and S−tout(X.p, T)→S′,
7. X ∈ Comm1

S

′ ∩ AP , S−tin(X.p, T)→S′, and p /∈ Pproc(X),

8. X ∈ Comm1
S

′ ∩ AP , S−tout(X.p, T)→S′, and p /∈ Pproc(X),

9. X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′, and p ∈ Pproc(X),

10. X ∈ Comm1
S

′ ∩ AP , S−tout(X.p, T)→S′, and p ∈ Pproc(X).

ad. 1

Suppose, (X,Y) ∈ Comm2
S

′ ∩ CommAA
S , S−tin(X.p, T)→, x is the second

argument of the corresponding in statement, S−tout(Y.q, T)→, and value w of
type T is sent. In such a case, instead of transitions tin and tout, the transition
tio is used to represent the communication. Let S−tio(X.p, Y.q, T)→S′, then:

• S′(X) = (running,nextpc(S(X)), ciS(X), pvS(X)|x=w) if nextpc(S(X)) 6=
0.

• S′(X) = (finished, 0, [], pvS(X)|x=w) if nextpc(S(X)) = 0.
• S′(Y) = (running,nextpc(S(Y)), ciS(Y), pvS(Y)) if nextpc(S(Y)) 6= 0.
• S′(Y) = (finished, 0, [], pvS(Y)) if nextpc(S(Y)) = 0.

If a valueless communication is considered then pvS(X) remains unchanged.

ad. 2

Suppose, (X,Y) ∈ Comm2
S

′∩CommAP
S , S−tin(X.p, T)→S′ (or S−tout(X.p, T)→S′),

and procedure Y.q is called. Then:

• S′(X) = (running, pcS(X), ciS(X)⊕ proc(Y.q, p), pvS(X)).
• S′(Y) = (taken, 1, [], pvS(Y)).

62 6 Models with α0 system layer

ad. 3

Suppose, (X,Y) ∈ Comm2
S

′∩CommPP
S , S−tin(X.p, T)→S′ (or S−tout(X.p, T)→S′),

and procedure Y.q is called. Then:

• S′(X) = (taken, pcS(X), ciS(X)⊕ proc(Y.q, p), pvS(X)).
• S′(Y) = (taken, 1, [], pvS(Y)).

ad. 4

This case is similar to the �rst case. The new state is de�ned in the same way.
The only di�erence is that one of these agents has performed its communica-
tion step earlier.

ad. 5

Let X ∈ Comm1
S

′ ∩ AA, S−tin(X.p, T)→S′. Then:

• S′(X) = (waiting, pcS(X), ciS(X)⊕ in(p|T), pvS(X)).

If the port p is used to collect values of one type only, then the in(p) entry is
used instead of in(p|T).

ad. 6

This case is similar to the previous one, but the out(p|T) (or out(p)) entry is
used.

ad. 7

LetX ∈ Comm1
S

′∩AP , S−tin(X.p, T)→S′, p /∈ Pproc(X) (X calls a procedure
of another agent), and Y = context(X). Then:

• S′(X) = (taken, pcS(X), ciS(X)⊕ in(p|T), pvS(X)).
• S′(Y) = (waiting, pcS(Y), ciS(Y), pvS(Y)).

If the port p is used to collect values of one type only, then the in(p) entry is
used instead of in(p|T).

ad. 8

This case is similar to the previous one, but the out(p|T) (or out(p)) entry is
used.

6.4 Transitions 63

ad. 9

Suppose X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′, p ∈ Pproc(X), and Y =
context(X). This means that Y is directly or indirectly performing the proce-
dure X.p. Performing the S−tin(X.p, T)→S′ step means that the procedure
collects its input parameter. Let x be the second argument of the correspond-
ing in statement and a value w was sent while the procedure call. If the in
statement is not the last procedure statement then:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)|x=w).

If a valueless communication is considered then pvS(X) remains unchanged.
If the in statement is the last procedure statement then the procedure

is �nished. Suppose, Y is indirectly performing the procedure X.p and exist
X1, . . . , Xm, m > 0 such that Y is performing a procedure of X1, X1 is
performing a procedure of X2, . . . , Xm is performing input procedure X.p
via port pm.

Let calledS(X,P) denote the set of agents that potentially called one of X
procedures from the set P ⊆ Pproc(X):

calledS(X,P) = {Z : ((Z ∈ AA ∧ amS(Z) = waiting ∧ guard /∈ ciS(Z)) ∨
∨ (Z ∈ AP ∧ amS(context(Z)) = waiting ∧ guard /∈ ciS(Z)))
∧ (∃p ∈ P, ∃q ∈ P(Z) :
((X.p, Z.q) ∈ C ∧ in(q|type(X.p)) ∈ ciS(Z)) ∨
∨ ((Z.q,X.p) ∈ C ∧ out(q|type(X.p)) ∈ ciS(Z)))} (6.17)

The term potentially called means that it is possible that port Z.q is con-
nected with a few ports and the communication via this port can be �nalized
as a communication with another active agent or another passive one (di�erent
than X). When performing of a procedure X.p is �nished, guards of all pro-
cedures of X are evaluated and a set P of available procedures is received. If
at least one of them has been already potentially called i.e. calledS(X,P) 6= ∅
then X starts another procedure immediately. If card(calledS(X,P)) > 1 then
one agent with the highest priority is chosen.

Suppose, Z ∈ AA is the chosen agent that starts performing a procedure
X.p′ via port r. Then:

• S′(X) = (taken, 1, [], pvS(X)|x=w).
• S′(Z) = (running, pcS(Z), ciS(Z)⊕ proc(X.p′, r), pvS(Z)).
• S′(Xm) = (taken,nextpc(S(Xm)), ciS(X

m)	 proc(X.p, pm), pvS(X
m)), if

calling the procedure X.p was not the last procedure block step for Xm.
Otherwise, the corresponding Xm procedure has �nished and the new
state for Xm and Xm−1 is determined as previously for X and Xm (if an
input procedure has been called) or as described at point 10 (if an output
procedure has been called).

64 6 Models with α0 system layer

Suppose, Y is directly performing the procedure X.p via its port q. Then,
the new state for X (and Z if any) is de�ned as above, and:

• S′(Y) = (running,nextpc(S(Y)), ciS(Y)	 proc(X.p, q), pvS(Y))

Suppose, calledS(X,P) = ∅. Besides agents belonging to the set calledS(X,P),
there may exist agents that are waiting for accessibility of X procedures in
order to ful�l their select statements guards. Let the set callableS(X,P) be
de�ned as follows:

callableS(X,P) = {Z : ((Z ∈ AA ∧ amS(Z) = waiting ∧ guard ∈ ciS(Z)) ∨
∨ (Z ∈ AP ∧ amS(context(Z)) = waiting ∧
∧ guard ∈ ciS(Z)))

∧ accessibility of procedures belonging to P

makes at least one branch of the corresponding

select statement open} (6.18)

Thus, the state S′ is de�ned as follows:

• S′(X) = (waiting, 0, ci′S(X), pvS(X)|x=w), where ci′S(X) contains all
ports from P together with the direction of parameters sending e.g. in(p1),
out(p2), etc.

• States of agents Y,X1, . . . , Xm are de�ned as previously.
• S′(Z) = (running,nextpc(S(Z)), ciS(Z) 	 guard, pvS(Z)), for any Z ∈

callableS(X,P) ∩ AA.
• S′(Z) = (taken,nextpc(S(Z)), ciS(Z) 	 guard, pvS(Z)), for any Z ∈

callableS(X,P) ∩ AP .
• S′(Z ′) = (running, pcS(Z

′), ciS(Z
′), pvS(Z

′)), for any Z ∈ callableS(X,P)∩
AP and Z ′ = context(Z).

In all above cases, if a valueless communication is considered then pvS(X)
remains unchanged.

ad. 10

Suppose X ∈ Comm1
S

′ ∩ AP , S−tout(X.p, T)→S′, p ∈ Pproc(X), and Y =
context(X). As previously, Y is directly or indirectly performing the proce-
dure X.p. Performing the S−tout(X.p, T)→S′ step means that the procedure
returns its result. Let x be the second argument of the corresponding out
statement and a value w is sent.

Suppose, Y is directly performing the procedureX.p and the out statement
is not the last procedure statement. In such a case, the state S′ is de�ned as
follows:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)).
• S′(Y) = (running, pcS(Y), ciS(Y), pvS(Y)|x=w).

6.5 LTS graphs 65

If a valueless communication is considered then pvS(X) remains unchanged.
Suppose, Y is indirectly performing the procedureX.p and existX1, . . . , Xm,

m > 0 such that Y is performing a procedure of X1, X1 is performing a proce-
dure of X2, . . . , Xm is performing output procedure X.p via one of its ports.
In such a case, the state S′ is de�ned as follows:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)).
• S′(Xm) = (taken, pcS(X

m), ciS(X
m), pvS(X

m)|x=w).

As previously, if a valueless communication is considered then pvS(X) remains
unchanged.

If the out statement is the last procedure statement then states of agents
changes as described at point 9. The only di�erence is the direction of a value
transfer i.e. the parameters value list that is updated belongs to the agent
that called the corresponding procedure.

Results of transitions performing for passive agents are de�ned similarly
as for active ones. The only di�erence is the problem of the last statement
in a procedure block. For example, if X ∈ AP , S−texec(X)→S′, a parameter
v is assign a value a with the exec statement, and the statement is not the
last one in the corresponding procedure block, then the state S′ is de�ned as
follows:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)|v=a).

If the exec statement is the last one in the corresponding procedure block,
then the procedure is �nished and the state of the model changes as described
previously for the tin transition.

In similar way are de�ned new states for a transition t ∈ {if , jump, loop,
null , select , start}. The exit statement always �nishes the corresponding pro-
cedure. It cannot be placed before the procedure in (out) statement used to
collect the procedure argument (return the procedure result).

6.5 LTS graphs

Assume A = (D,B, α0) is an Alvis model. For a pair of states S, S′ we
say that S′ is directly reachable from S i� there exists t ∈ T such that
S−t→S′. We say that S′ is reachable from S i� there exist a sequence of
states S1, . . . , Sk+1 and a sequence of transitions t1, . . . , tk ∈ T such that
S = S1−t1→S2−t2→. . .−tk→Sk+1 = S′. The set of all states that are reach-
able from the initial state S0 is denoted by R(S0).

States of an Alvis model and transitions among them are represented
using a labelled transition system (LST graph for short). An LTS graph
is directed graph LTS = (V,E, L), such that V = R(S0), L = T , and
E = {(S, t, S′) : S−t→S′ ∧ S, S′ ∈ R(S0)}. In other words, an LTS graph
presents all reachable states and transitions among them in the form of the
directed graph.

66 6 Models with α0 system layer

agent X1 {

loop { -- 1

out p; } -- 2

}

agent X2 {

loop { -- 1

in q; } -- 2

}

Fig. 6.5. Example 1.

To illustrate the idea of LTS graph let us consider two simple examples of
Alvis models. The �rst model shown in Fig. 6.5 represents two active agents
that communicate one with another. The X1 agent is a sender and X2 is
a receiver. The LST graph for this model is shown in Fig 6.6. The graph is
another approach to explain the rules of the Alvis communication between
active agents.

The second model is presented in Fig. 6.7. It deals with a communication
between an active and a passive or two passive agents. The states in the LTS
graph illustrate the way agents states change while such a communication.
The most interesting parts of these states are modes and context information
lists.

The graphical form of LTS graphs presentation is very useful from users
point of view. An LTS graph generated automatically for a model is stored in
a textual �le. For veri�cation purposes such graphs are transformed into the
Binary Coded Graphs (BCG) format. Finally, its properties are veri�ed with
the CADP toolbox [18]. CADP o�ers a wide set of functionalities, ranging
from step-by-step simulation to massively parallel model-checking.

6.5 LTS graphs 67

Fig. 6.6. Example 1 � LTS graph.

68 6 Models with α0 system layer

agent X1 {

loop { -- 1

out p; } -- 2

}

agent X2 {

proc q1 { in q1; -- 1

out q2 } -- 2

}

agent X3 {

proc r { in r; -- 1

null; } -- 2

}

Fig. 6.7. Example 2.

6.5 LTS graphs 69

Fig. 6.8. Example 2 � LTS graph.

References

1. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of
the IEEE 77(4) (1989) 541�580

2. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1�3. Springer-Verlag, Berlin, Germany (1992-97)

3. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. Lec-
ture Notes on Concurrency and Petri Nets 3098 (2004)

4. Szpyrka, M.: Analysis of RTCP-nets with reachability graphs. Fundamenta
Informaticae 74(2�3) (2006) 375�390

5. Szpyrka, M.: Petri nets for modelling and analysis of concurrent systems. WNT,
Warsaw (2008) (in Polish).

6. Samolej, S., Rak, T.: Simulation and performance analysis of distributed inter-
net systems using tcpns. Informatica (Slovenia) 33(4) (2009) 405�415

7. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra.
Elsevier Science, Upper Saddle River, NJ, USA (2001)

8. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

9. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
10. Aceto, L., Ingófsdóttir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling,

Speci�cation and Veri�cation. Cambridge University Press, Cambridge, UK
(2007)

11. Fencott, C.: Formal Methods for Concurrency. International Thomson Com-
puter Press, Boston, MA, USA (1995)

12. Matyasik, P.: Design and analysis of embedded systems with XCCS process
algebra. PhD thesis, AGH University of Science and Technology, Faculty of
Electrical Engineering, Automatics, Computer Science and Electronics, Kraków,
Poland (2009)

13. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126(2) (1994) 183�235

14. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis � modelling language for concur-
rent systems. In Bouvry, P., Gonzalez-Velez, H., Koªodziej, J., eds.: Intelligent
Decision Systems in Large-Scale Distributed Environments. Volume 362 of SCI.
Springer-Verlag (2011) 315�342

15. Szpyrka, M., Matyasik, P., Mrówka, R.: Practical approach to modelling and
veri�cation of concurrent systems with Alvis. In: Proc. of the 25th European
Conference on Modelling and Simulation, Krakow, Poland (2011) 539�545

72 References

16. Szpyrka, M., Kotulski, L., Matyasik, P.: Speci�cation of embedded systems
environment behaviour with Alvis modelling language. In: Proc. of the 2011
International Conference on Embedded Systems and Applications ESA'11 (part
of Worldcomp 2011), Las Vegas, Nevada, USA (July 18-21 2011)

17. O'Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O'Reilly Media,
Sebastopol, CA, USA (2008)

18. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for
the construction and analysis of distributed processes. In: Computer Aided
Veri�cation (CAV'2007). Volume 4590 of LNCS., Berlin, Germany, Springer
(2007) 158�163

19. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London,
UK (2008)

20. Balicki, K., Szpyrka, M.: Formal de�nition of XCCS modelling language. Fun-
damenta Informaticae 93(1-3) (2009) 1�15

21. Barnes, J.: Programming in Ada 2005. Addison Wesley (2006)
22. ISO: Information processing systems, open systems interconnection LOTOS.

Technical Report ISO 8807 (1989)
23. Object Management Group: OMG Systems Modeling Language (OMG SysML).

(2008)
24. Ada Europe: Ada Reference Manual ISO/IEC 8652:2007(E) Ed. 3. (2007)
25. Burns, A., Wellings, A.: Concurrent and real-time programming in Ada 2005.

Cambridge University Press (2007)
26. Esterel Technologies SA: Welcome to SCADE 6.0. (2007)
27. Jensen, K., Kristensen, L.: Coloured Petri nets. Modelling and Validation of

Concurrent Systems. Springer, Heidelberg (2009)
28. Szpyrka, M., Szmuc, T.: Veri�cation of automatic train protection systems

with RTCP-nets. In Górski, J., ed.: Computer Safety, Reliability and Security.
Volume 4166 of LNCS. Springer-Verlag (2006) 344�357

