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Abstract The chapter presents a description of a novel modelling language called
Alvis defined for the design of concurrent especially real-time systems. Alvis com-
bines the advantages of formal methods and practical modelling languages. Based
on CCS and XCCS process algebras, Alvis utilizes flexible graphical modelling of
interconnections among agents and a high level programming language used for the
description of agents behaviour. Each agent in a model can use rule-based systems
to support its decisions. A small set of language statements and graphical concepts
make Alvis easy to learn and use. The possibility of a formal model verification,
makes Alvis a formal modelling language. Alvis modelling environment creates in
parallel a model of the considered system and a labelled transition system (LTS
graph) that is its formal representation. The LTS graph can be formally verified with
the CADP toolbox. A survey of main Alvis features from practical point of view, is
given in the chapter.

1 Introduction

The Phenomena, such as concurrency and non-determinism that are central to
modelling embedded or distributed systems, turn out to be very hard to handle
with standard techniques, such as peer reviewing or testing. Formal methods in-
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cluded into the design process may provide more effective verification techniques,
and may reduce the verification time and system costs. Unfortunately, there is
a gap between formal mathematical modelling languages and languages used in
everyday engineering practice. Formal methods like Petri nets [Murata(1989)],
[Jensen(1992-97)], [Bengtsson and Yi(2004)], [Szpyrka(2006)], [Szpyrka(2008b)],
[Samolej and Rak(2009)], process algebras [Bergstra et al(2001)], [Hoare(1985)],
[Milner(1989)], [Aceto et al(2007)], [Fencott(1995)], [Matyasik(2009)] or time au-
tomata [Alur and Dill(1994)], [Bengtsson and Yi(2004)] provide techniques for a for-
mal specification and modelling of concurrent systems but they are very seldom used
in real IT projects. Due to their specific mathematical syntax, these languages are
treated as the ones suitable only for scientists.

Alvis is a novel modelling language designed especially for concurrent sys-
tems. Our goal was to combine formal and practical modelling languages. Alvis is
a successor of the XCCS language [Balicki and Szpyrka(2009)], [Matyasik(2009)],
which is an extension of the CCS process algebra [Milner(1989)], [Fencott(1995)],
[Aceto et al(2007)]. In contrast to process algebras, Alvis uses a high level pro-
gramming language based on the Haskell syntax, instead of algebraic equations.
Moreover, it combines hierarchical graphical modelling with high level program-
ming language statements. An Alvis model is composed of three layers:

Graphical layer – is used to define data and control flow among distinguished
parts of the system under consideration that are called agents. The layer takes
the form of a hierarchical graph and supports both top-down and bottom-up ap-
proaches to systems development.

Code layer – is used to describe the behaviour of individual agents. It uses both
Haskell functional programming language [O’Sullivan et al(2008)] and original
Alvis statements.

System layer – depends on the model running environment i.e. the hardware
and/or operating system. The layer is the predefined one. It gathers information
about all agents in a model and their states. Moreover, it provides some of the
model meta-data to agents.

Alvis uses a very small number of graphical items and language statements.
Our goal was to provide a flexible language with a small number of concepts,
but with a possibility of a formal verification of models. An Alvis model se-
mantic finds expression in a LTS graph (labelled transition system). Execution
of any language statement is expressed as a transition between formally defined
states of such a model. An LTS graph is encoded using Binary Coded Graphs
(BCG) format. The CADP toolbox [Garavel et al(2007)] and model checking tech-
niques [Baier and Katoen(2008)] are used to verify its properties.

Rule-based systems are widely used in various kinds of computer systems, e.g.
expert systems, decision support systems, monitoring and control systems, diagnos-
tic systems, etc. They constitute an easy way of knowledge encoding and interpreta-
tion [van Harmelen et al(2007)], [Nalepa(2009)], [Nalepa and Ligęza(2010)]. Alvis

0 Project web site: http://fm.ia.agh.edu.pl
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uses Haskell to define parameters, data types and data manipulation functions. En-
coding a rule-based system as a Haskell function is the easiest way to include the
system into the corresponding Alvis model. Thus, an agent in an embedded or a dis-
tributed system can use a rule-based system to take decisions upon data collected
from its sensors.

The aim of the chapter is to provide a description of both graphical and textual
(code) parts of Alvis models and to present a method of encoding rule-based sys-
tems in Haskell and including them into Alvis models. The chapter is organised as
follows. Section 2 provides a short comparison of Alvis with other languages used
for embedded and distributed systems development. Section 3 deals with commu-
nication diagrams, while Section 4 provides a survey of Alvis language statements.
System layers are described in Section 5. Section 6 deals with encoding rule-based
systems using Haskell in order to include them into Alvis models. A small example
of an Alvis model with a rule-based system included is given in Section 7. A short
description of models states and transitions among them is presented in Section 8.
A short summary is given in the final section.

2 Related works

This section provides a short comparison of Alvis with other modelling languages
used in industry for the embedded or distributed systems development.

E-LOTOS is an extension of the LOTOS modelling language (Language Of Tem-
poral Ordering Specification) [ISO(1989)]. The main intention of the E-LOTOS ex-
tension was to enable modelling of the hardware layer of a system. Thus, in the spec-
ification, we can find such artifacts as interrupts, signals, and the ability to define
events in time. With such extensions, E-LOTOS significantly expanded the possibil-
ity of using the algebra of processes, which is the starting point for the specification
in this language.

It should be noted that the Alvis language has many features in common with E-
LOTOS. First of all, Alvis as E-LOTOS is derived from process algebras. Alvis, like
E-LOTOS, was intended to allow formal modelling and verification of distributed
real-time systems. To meet the requirements, Alvis provides a concept of time and
a delay operator. In contrast to E-LOTOS, Alvis provides graphical modelling lan-
guage. Moreover, Alvis toolkit supports a LTS graph generation, which significantly
simplifies the formal verification of models.

System Modelling Language (SysML)[Sys(2008)] aims to standardize the pro-
cess of a system specification and modelling. The original language specification
was developed as an open source project on behalf of the International Council on
Systems Engineering INCOS and the Object Management Group (OMG). SysML is
a general purpose modelling language for systems engineering applications. In par-
ticular, it adds two new types of diagrams: requirement and parametric diagrams.
The Alvis language has many common features with the SysML block diagrams and
activity diagrams: ports, property blocks, communication among the blocks, hierar-
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chical models. Unlike SysML, Alvis combines structure diagrams (block diagrams)
and behaviour (activity diagrams) into a single diagram. In addition, Alvis defines
formal semantics for the various artifacts, which is not the case in SysML. The con-
cept of agent in Alvis corresponds with the SysML block definition. The formal se-
mantics of Alvis allows you to create automated tools for verification, validation and
runtime of Alvis models. SysML is a general-purpose systems modelling language,
which covers most of the software engineering phases from analysis to testing and
implementation. Alvis is focused on the structural model, the behavioural aspects
of the system and formal verification of its properties. Its main area of application
are distributed and embedded real-time systems. Alvis can be used as an extension
to the software engineering process based on SysML.

Ada is the only ISO standard object-oriented concurrent real-time programming
language [Ada Europe(2007)], [Barnes(2006)], [Burns and Wellings(2007)]. Ada
has been designed to address the needs of large-scale system development, espe-
cially for distributed and embedded systems. Ada is equipped with mechanisms for
concurrent programming. The main concurrency constructs are tasks (processes),
which model active entities, and protected objects, which model shared data struc-
tures that need to be accessed with mutual exclusion. Tasks can communicate with
each other directly (using synchronous mechanism called rendezvous) or indirectly
through protected objects. The Annex E of Ada defines facilities for supporting the
implementation of distributed systems using multiple partitions working coopera-
tively as part of a single Ada program. A distributed system is an interconnection of
one or more processing nodes and zero or more storage nodes. A few constructs in
Ada were an inspiration while developing Alvis language. For example, protected
objects have been used to define passive agents and the Ada select statement has
been used to define the Alvis select statement. An Alvis model composed of few
agents that work concurrently is similar to an Ada distributed system. Active agents
can be treated as processing nodes, while passive agents as storage ones. The main
difference between Alvis and Ada is the communication model. First of all, Alvis
uses a simplified rendezvous mechanism with equal agents without distinguishing
servers and clients. Moreover, Alvis does not support asynchronous procedure call-
ing, a procedure uses an active agent context. Finally, Alvis in contrast to Ada uses
significantly less language statements and enables a formal verification.

SCADE [SCADE(2007)] is a product developed by the Esterel Technologies
company. It is a complex tool for developing a control software for embedded criti-
cal systems and for distributed systems. A system is described as an input to output
transformation. In every cycle inputs are transformed to outputs according to a spec-
ification provided by functions: linear and discrete and state machine. SCADE al-
lows system developer to choose from a large library of predefined components. The
KCG code generator, which is a part of the SCADE suite, produces C code that has
all the properties required for safety-critical software. SCADE also provides tools
for checking system specification and verification of the developed model.

The Alvis approach is very different. The system in Alvis is represented as a set
of communicating tasks which are continuously processing their instructions. Alvis
also has no code generation phase, because it is an executable specification itself.
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Fig. 1 Agents (from left): active, passive, hierarchical

Moreover, the system verification in Alvis is based on an LTS graph generation
instead of specification-model consistency and statical code checking. SCADE and
Alvis have also different approaches to types. The first one adopts simple static C
language types due to specific runtime requirements, while the second one uses the
Haskell type system.

3 Communication diagrams

The key concept of Alvis is agent. The name has been taken from the CCS process
algebra [Milner(1989)] and denotes any distinguished part of the system under con-
sideration with defined identity persisting in time. There are two kinds of agents in
Alvis. Active agents perform some activities and are similar to tasks in Ada pro-
gramming language [Barnes(2006)], [Burns and Wellings(2007)]. Each of them can
be treated as a thread of control in a concurrent or distributed system. On the other
hand, passive agents do not perform any individual activity, and are similar to pro-
tected objects (shared variables). Passive agents provide mechanism for the mutual
exclusion and data synchronisation.

A communication diagram is a hierarchical graph whose nodes may represent
both agents (active or passive) and parts of the model from the lower level. They are
the only way in the Alvis modelling language, to point out agents that communicate
one with another. Moreover, the diagrams allow programmers to combine sets of
agents into modules that are also represented as agents (called hierarchical ones).

Active agents are drawn as rounded boxes while passive ones as rectangles. An
agent’s identifier (name) is placed inside the corresponding shape. The first char-
acter of the identifier must be an upper-case letter. Other characters (if any) must
be alphabetic characters, either upper-case or lower-case, digits, or an underscore.
Alvis identifiers are case sensitive. Moreover, the Alvis keywords cannot be used as
identifiers. Names of agents that are initially activated (represent running processes)
are underlined. Hierarchical agents are indicated by black triangles. Graphical rep-
resentation of Alvis agents is shown in Fig. 1.

An agent can communicate with other agents through ports. Ports are drawn as
circles placed at the edges of the corresponding rounded box or rectangle. There is
no distinction between input and output ports on communication diagrams. Any port
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Fig. 2 One-way and two-way communication channels

can be used as an input or output one. Each agent port must have a unique identifier
(name) assigned, but ports of different agents may have the same identifier assigned.
A port’s identifier (name) is placed inside the corresponding rounded box/rectangle
next to the port. It must fulfill the same requirements as agents’ identifiers but its
first character must be a lower-case letter.

Alvis agents can communicate with each other directly using the connection
mechanism (communication channels). A communication channel is defined explic-
itly between two agents and connects two ports. Communication channels are drawn
as lines (or broken lines). An arrowhead points out the input port for the particular
connection. Communication channels without arrowheads represent pairs of con-
nections with opposite directions. A connection between two active agents creates
a synchronisation point between them. On the other hand, a connection between an
active and a passive agent or between two passive agents is similar to a procedure
call. Examples of communication channels are shown in Fig. 2.

For the effective modelling, Alvis communication diagrams enable distributing
parts of a diagram across multiple subdiagrams called pages. Pages are combined
using the so-called substitution mechanism. An active agent on one level can be
replaced by a page on the lower level, which usually gives a more precise and de-
tailed description of the activity represented by the agent. Such a substituted agent
is called hierarchical one. On the other hand, a part of a communication diagram
can be treated as a module and represented by a single agent on a higher level. Thus,
communication diagrams support both top-down and bottom-up approaches.

A hierarchical agent and its subpage are joined together using so-called binding
function that maps ports of the hierarchical agent to the join ports of the correspond-
ing subpage. The join ports of the subpage are those ports of agents from the page
whose names are the same as those of the hierarchical agent. There are two kinds of
substitution called simple and extended one. In the case of the simple substitution,
the binding function is a bijection. It means that each port of the hierarchical agent
has exactly one corresponding port in the subpage. On the other hand, in the case
of the extended substitution, one port of the hierarchical agent may have more than
one join port assigned on the subpage.

Let us consider the well-known readers-writers problem. We have two kinds of
agents called readers and writers respectively that use a shared resource called li-
brary here. At most, one writer can use the library at any time, but a few readers
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Fig. 3 Readers-Writers model – top level (primary) page

Fig. 4 PReaders subpage

can use it at the same time. The presented model uses the extended substitution
mechanism.

Fig. 3 presents the main page of the communication diagram for the considered
system. The Readers agent stands for the set of readers used in the model, while
the Writers one stands for writers. The primary page will stay unchanged, if we
decide to change the number of readers or writers in the model. Subpages for these
hierarchical agents are shown in Fig. 4 and 5 respectively.

The structure of a communication diagram is represented using a labelled di-
rected graph called page hierarchy graph. Nodes of such a graph represent pages,
while arcs (labelled with names of hierarchical agents) represent the substitution
function that maps hierarchical agents to their subpages. Of course the number of
pages must be greater than the number of hierarchical agents. Pages that are not used
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Fig. 5 PWriters subpage

Fig. 6 Inez 2 editor – Readers-Writers model with page hierarchy graph

as subpages are called primary pages. They are roots of the trees that constitute the
page hierarchy graph.

Modelling concurrent systems with Alvis is supported by so-called Alvis Toolkit.
The toolkit, among other things, contains Inez 2 editor for designing Alvis mod-
els. A screenshot of the editor is shown in Fig. 6. The top-left part of the window
contains the page hierarchy graph for the Readers-Writers model.

Both substitutions used in the considered model are the extended ones. The
equivalent flat (non-hierarchical) communication diagram is presented in Fig. 7.

Ports that are not used in any connection are treated as the ones for communi-
cation with the considered system environment. It is possible to define in the code
layer all details of signals that a systems collects from its environment or sends to
it. Such ports are called border ones and they must have unique names.

0 All diagrams presented in the paper have been designed with the Inez 2 editor. For more details
visit the Alvis website: http://fm.ia.agh.edu.pl
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Fig. 7 Readers-Writers model – flat communication diagram

4 Language statements

As it has already been said, the code layer is used to describe the behaviour of in-
dividual agents. The layer uses both Haskell functional language and original Alvis
statements. To be more convenient from the engineering point of view, Alvis uses
statements typical for high level programming languages instead of algebraic equa-
tions used in the CCS process algebra.

Both Haskell and Alvis are case sensitive languages. Haskell requires type names
to start with an upper-case letter, and variable names to start with a lower-case letter.
We follow Haskell footsteps. Moreover, Alvis requires agent names to start with an
upper-case letter, and port names to start with a lower-case letter.

Inez 2 editor uses an XML file format to store both graphical and code layers.
The general structure of the code layer is shown in Listing 1.

The preamble contains definitions of types, constants and functions used to ma-
nipulate data in a model. This part of the preamble is encoded in pure Haskell.
Moreover, the preamble may contain specification of some environment activities
that may be useful e.g. for an Alvis model simulation. The implementation con-
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-- Preamble:
-- types
-- constants
-- functions
-- environment specification

-- Implementation:
-- agents

Listing 1 Structure of the code layer

tains definitions of the agents’ behaviour. This part is encoded using native Alvis
statements, but the preamble contents is used to represent parameters values and to
manipulate them. It contains at least one agent block as shown in Listing 2. It is
possible to share one definition among a few agents. In such a case, a few agents’
names are placed after the keyword agent separated by commas. If necessary, an
agent’s name is followed by its priority put inside round brackets. Priorities range
from 0 to 9. Zero is the higher system priority.

agent AgentName;
-- declaration of parameters
-- agent body

Listing 2 Structure of an agent block

Alvis uses the Haskell’s type system. Types in Haskell are strong, static and can
be automatically inferred. The strong property means that the type system guaran-
tees that a program cannot contain errors coming from using improper data types,
such as using a string as an integer. Moreover, Haskell does not automatically co-
erce values from one type to another. The static property means that the compiler
knows the type of every value and expression at compile time, before any code is
executed. Haskell’s combination of strong and static typing makes it impossible for
type errors to occur at runtime.

Selected basic Haskell types recommended to be used in Alvis are as follows:

• Char – Unicode characters.
• Bool – Values in Boolean logic (True and False).
• Int – Fixed-width integer values – The exact range of values represented as Int

depends on the system’s longest native integer.
• Double – Float-point numbers typically 64 bits wide and uses the system’s native

floating-point representation.

The most common composite data types in Haskell (and Alvis) are lists and tu-
ples (see Listing 3). A list is a sequence of elements of the same type, with the
elements being enclosed in square brackets and separated by commas, while a tuple
is a sequence of elements of possibly different types, with the elements being en-
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closed in parentheses and separated by commas. Haskell represents a text string as
a list of Char values.

[1,2,3,4] -- type [Int]
[’a’,’b’,’c’] -- type [Char] (String)
[True,False] -- type [Bool]
(1,2) -- type (Int,Int)
(’a’,True) -- type (Char,Bool)
("abc",1,True) -- type (String,Int,Bool)

Listing 3 Examples of Haskell composite data types

To make the source code more readable, one can introduce a synonym for an ex-
isting type using the type keyword or define a new data type using the data keyword.
The data statement can be used to define also the so-called algebraic data types, e.g.
an enumeration type. Examples of type synonyms and definitions of new data types
are shown in Listing 4. Moreover, Haskell supports the structure data type. For more
details see for example [O’Sullivan et al(2008)].

type AgentID = Int
type InputData = (Int,Int) -- pair
type TrafficSignal = [Char] -- list
data AgentDescription = AgentDesc Int String [String]
data Move = East | South | West | North

Listing 4 Examples of type synonyms and definitions of new data types

Constants are defined using parameterless Haskell functions, e.g. name = "A";.
The = symbol in Haskell code represents meaning – the name on the left is defined
to be the expression on the right. This meaning of = is valid in the preamble. In the
implementation part, the = symbol stands for the assignment operator.

Parameters are defined using the Haskell syntax. Each parameter is placed in
a separate line. The line starts with a parameter name, then the :: symbol is placed
followed by the parameter type. The type must be followed by the = symbol and the
parameter initial value as shown in Listing 5.

size :: Int = 7;
queue :: [Double] = [];
inputData :: (Int, Char) = (0, ’x’);

Listing 5 Examples of parameters definitions

The assignment operator is also used as a part of the exec statement. The exec
statement is the default one. Therefore, the exec keyword can be omitted. Thus, to
assign a literal value 7 to an integer parameter x the first and the second statement
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presented in Listing 6 can be used. The assignment operator can also be followed by
an expression. Alvis uses Haskell to define and manipulate data types. Thus, such
an expression may take the form of a Haskell function call (see Listing 6).

exec x = 7;
x = 7;
x = x + 1;
x = rem x 3;
x = sqrt y;

Listing 6 Examples of using the exec statement

Alvis provides a typical if else statement with optional elseif clauses. Statements
performed within the if, else or elseif clauses must be put inside curly brackets.
Some Alvis statements contain so-called guards. Guards are logical expressions,
written in Haskell, placed inside round brackets. They are used for example, as
conditions for the if else statement. The general syntax of the conditional statement
is shown in Listing 7 – g1, g2 and g3 stand for guards.

if (g1) {...}
elseif (g2) {...}
elseif (g3) {...}
...
else {...}

Listing 7 Syntax of the conditional statement

Recursion is one of the two mechanisms used for looping in the Alvis language.
Two language concepts are used for this purpose: labels and the jump statement. La-
bels in Alvis are identifiers followed by a colon. A label must start with a lower case
letter. The statement is composed of the jump key word and a label name (without
a colon). The jump statement is the key statement for translating algorithms from
CCS to Alvis.

Moreover, Alvis provides three kinds of loop statements, as shown in Listing 8.
The first one is the most general loop statement. It repeats its contents infinitely. The
second loop repeats its contents while the guard (g) is satisfied, the guard is checked
every time before entering the loop contents. The loop is similar to the while loop
in most languages. The last statement repeats its contents every ms milliseconds.

loop {...}
loop (g) {...}
loop (every ms) {...}

Listing 8 Syntax of loop statements



Alvis – modelling language for concurrent systems 13

In order to allow for the description of agents whose behaviour may follow differ-
ent alternative paths, Alvis offers the select statement (see Listing 9). The statement
is similar to the basic select statement from the Ada programming language, but
there is no distinction between a server and a client. The statement may contain
a series of alt clauses called branches. Each branch may be guarded. These guards
divide branches into open and closed ones. A branch is called open, if it does not
have a guard attached or its guard evaluates to True. Otherwise, a branch is called
closed. To avoid indeterminism, if more than one branch is open the first of them is
chosen to be executed. If all branches are closed, the corresponding agent is post-
poned until at least one branch is open.

select {
alt (g1) {...}
alt (g2) {...}
alt (g3) {...}
...

}

Listing 9 Syntax of the select statement

To postpone an agent for some time the delay statement is used. The statement is
composed of the delay key word and a time period in milliseconds. The statement
is also used to define time-outs. A branch may contain the delay as its guard (see
Listing 10). In such a case, the third branch will be open after ms milliseconds.
Thus, if all branches are closed, the corresponding agent waits ms milliseconds and
follows the last branch. However, if at least one branch is open before the delay
goes by, then the delay is cancelled. If necessary a branch may contain only the null
statement.

select {
alt (g1) {...}
alt (g2) {...}
alt (delay ms) {...}

}

Listing 10 Syntax of the select statement with a time-out

An agent can communicate with its outside world using ports. Each port can be
used both as an input or an output one. The current role of a port is determined by
two factors:

1. Connections to the port in the corresponding communication diagram (i.e. one-
way or two-way connections);

2. Statements used in the code layer.
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Moreover, any communication through a port can be a pure synchronisation or
a single value (probably of a composed type) can be sent/collected. A pure synchro-
nisation is a communication without sending values of parameters.

Alvis uses two statements for the communication. The in statement for collecting
data and out for sending. Each of them takes a port name as its first argument and
optionally a parameter name as the second. Parameters are not used for the pure
communication. Syntax for these statements is given in Listing 11 (p stands for
a port name and x stands for a parameter). The in statement assigns the collected
value to its parameter, while the out statement sends the value of its parameter.
Instead of a parameter, a constant can be used in the out statement.

in p;
in p x;
out p;
out p x;

Listing 11 Syntax of the in/out statements

Passive agents are used to store data shared among agents and to avoid the simul-
taneous use of such data by two or more agents. They provide a set of procedures
that can be called by other agents. Each procedure has its own port attached and
a communication with a passive agent via that port is treated as the correspond-
ing procedure call. Depending on the communication direction, such a procedure
may be used to send or collect some data from the passive agent. Each procedure
is defined with the proc statement that is followed by a guard (optionally) and the
corresponding port name. The procedure is accessible for other agents only if the
guard evaluates to True.

agent Buffer {
i :: Int = 0;
proc pop { out pop i; }
proc push { in push i; }

}

Listing 12 Example of a passive agent definition

Alvis models can use so-called border ports i.e. ports without any connections
that are treated as communication channels with the system environment. Properties
of border ports are specified in the code layer preamble with the use of the environ-
ment statement. Each border port used as an input one is described with at least one
in clause. Similarly, each border port used as an output one is described with at least
one out clause. Using in and out clauses, a designer can specify both values sent
through the corresponding port and time points (in milliseconds), when the port can
be used. Each clause inside the environment statement contains the following pieces
of information:
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• in or out key word,
• the border port name,
• a type name or a list of permissible values to be sent through the port,
• a list of time points, when the port is accessible.

If a border port is used both as an input and output one, then it must be de-
scribed both with the in and out clauses. If different kinds of signals can be sent
through a border port, then more than one in or out clause can be used. If a border
port is used for a parameterless communication, then the first list is empty. Sim-
ilarly, if a border port is always accessible, then the second list is empty. Lists
are defined using the Haskell language. In particular, it is possible to use infinite
lists [O’Sullivan et al(2008)].

Border ports names must be unique in a model. It is possible to use a border port
name more than once, but it means that more than one agent can send (or collect)
signals through the same border port.

in p1 [0,1] [];
in p2 Bool [];
in p3 [0,1,5] (map (10*) [0..]);
in p4 [1] [1000,2000,3000];
out p5 [0,1] [];
out p5 Bool [];
out p6 [] [];

Listing 13 Examples of border ports specification

Let us consider the border ports presented in Listing 13.

p1 – at any time point one of the values 0 or 1 (at random) can be collected
through the port;

p2 – at any time point a Boolean value can be collected through the port;
p3 – every 10 ms one of the values 0, 1 or 5 can be collected through the port;
p4 – three times at given time points the value 1 can be collected through the port;
p5 – at any time point a Boolean value or 0 or 1 can be sent through the port;
p6 – at any time point a parameterless signal can be sent through the port.

5 System layers

As it has already been said, the system layer is the third one and depends on the
model running environment, i.e. the hardware and/or operating system. The layer
is necessary for a model simulation and an LTS graph generation. From the users
point of view, the layer is the predefined one and it works in the read-only mode.
Agents can retrieve some data from the layer, but they cannot directly change them.
The system layer provides some functions that are useful for the implementation
of scheduling algorithms or for retrieving information about other agents states.
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An example of such a system layer function is the ready function that takes as its
argument a list of ports names of a given agent (with in or out keywords to point
out the communication direction), and returns True only if at least one of these ports
can be used for a communication immediately.

A user can choose one of a few versions of the layer and it affects the model
semantic. System layers differ about the scheduling algorithm and system architec-
ture mainly. There are two approaches to the scheduling problem considered. Sys-
tem layers with α symbol provide a predefined scheduling function that is called
after each step automatically. On the other hand, system layers with β symbol do
not provide such a function. A user must define a scheduling function himself.

Both α and β symbols are usually extended with some indicators put in the
superscript or/and subscript. An integer put in the superscript denotes the number of
processors in the system. Zero is used to denote the unlimited number of processors.
A symbol put in the subscript denotes the selected system architecture or/and chosen
scheduling algorithm.

In this paper we will consider only the α0 system layer. This layer makes Alvis
a universal formal modelling language similar to Petri nets or process algebras. The
α0 system layer scheduler is based on the following assumptions.

• Each active agent has access to its own processor and performs its statements as
soon as possible.

• The scheduler function is called after each statement automatically.
• In case of conflicts, agents priorities are taken under consideration. If two or more

agents with the same highest priority compete for the same resources, the system
works indeterministically.
A conflict is a state when two or more active agents try to call a procedure of
the same passive agent or two or more active agents try to communicate with the
same active agent.

The α0 system layer is the most suitable one for distributed systems. In such
a case, each agent is an autonomous system with its own processor. If embedded
systems are considered, the β line of system layers can be more interesting. These
system layers allow testing an embedded system with different scheduling algo-
rithms.

6 Rule-based systems

Many active agents check sensors providing information about the system’s environ-
ment and/or collects information from another agents and take actions depending on
the collected data. An agent may be implemented to use a rule-based system to make
decisions.

In the presented approach a rule-based system takes the form of a decision ta-
ble with non-atomic values of attributes. Each cell of such a decision table should
contain a formula, which evaluates to a Boolean value for condition attributes, and
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to a single value (that belongs to the corresponding domain) for decision attributes
([Szpyrka(2008a)]). It means that for any condition attribute we can write a for-
mula that describes suitable values of the attribute in the corresponding rule. On the
other hand, for any decision attribute we can write a formula that contains names of
condition attributes and evaluates to a single value belonging to the domain of the
decision attribute.

Let us consider the decision table presented in Table 1. The three condition at-
tributes f , r and l stand for infra-red sensors readings. They can take any integer
value from 0 to 255. The higher the value the further the object is. The front sensor
f is mounted directly in the centreline of a robot while the left l and right r one
are mounted 40 degrees to the left and to the right respectively. The thres (thresh-
old) parameter distinguishes near and far objects and can be adjusted according to
needs. The rm and lm attributes are motors directions where +1 means forward
movement, −1 backward movement and 0 means stop. In the decision rule 6, the
formula r means that any value of the attribute r is possible.

Table 1 Decision table for obstacle avoidance
l f r lm rm

1 l > thres f > thres r > thres +1 +1
2 l ≤ thres f ≤ thres r ≤ thres −1 −1
3 l ≤ thres f ≤ thres r > thres +1 −1
4 l ≤ thres f > thres r > thres +1 0
5 l > thres f > thres r ≤ thres 0 +1
6 l > thres f ≤ thres r −1 +1
7 l ≤ thres f > thres r ≤ thres −1 +1

To be useful, a decision table should satisfy some qualitative properties, such as
completeness, consistency (determinism), etc. Let us focus on the following three
properties:

1. A decision table is considered to be complete if for any possible input situation
at least one rule can produce a decision.

2. A decision table is deterministic (consistent) if no two different rules can produce
different results for the same input situation.

3. A decision table is optimal if any rule belonging to it is independent. Let R be
a complete and consistent set of decision rules. A rule r is independent if the set
R−{r} is not complete. A rule r is dependent if the rule is not independent.

The formal definitions of those properties can be found in [Szpyrka(2008a)]. The
presented decision table has been verified after transformation to Haskell code.

A decision table can be treated as a function that takes values of condition at-
tributes as its arguments and provides values of decision attributes as its result. List-
ing 14 presents Haskell implementation of the decision table shown in Table 1.
The function maps a triple of type Condition to a pair of type Decision. For
the sake of simplicity built-in Haskell types have been used as attributes domains.
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However, the types will be reduced to expected ranges while the decision table ver-
ification.

type Condition = (Int, Int, Int)
type Decision = (Int, Int)

rbs :: Condition -> Decision
rbs (l,f,r) | l > 30 && f > 30 && r > 30 = (1,1)
rbs (l,f,r) | l <= 30 && f <= 30 && r <= 30 = (-1,-1)
rbs (l,f,r) | l <= 30 && f <= 30 && r > 30 = (1,-1)
rbs (l,f,r) | l <= 30 && f > 30 && r > 30 = (1,0)
rbs (l,f,r) | l > 30 && f > 30 && r <= 30 = (0,1)
rbs (l,f,_) | l > 30 && f <= 30 = (-1,1)
rbs (l,f,r) | l <= 30 && f > 30 && r <= 30 = (-1,1)

Listing 14 Decision table as the rbs function

Haskell functions can be defined piece-wise, meaning that we can write one ver-
sion of a function for certain parameters and then another version for other param-
eters. Moreover, the so-called pattern matching can be used, in which a sequence
of syntactic expressions called patterns is used to choose between a sequence of
results of the same type. If the first pattern is matched, then the first result is chosen;
otherwise the second pattern is checked, etc. For the 6th rule, the wild card pattern
_ (underscore) is used that matches any value. Using the wild card pattern we can
indicate that we do not care what is present in part of a pattern. Of course, more than
one wild card can be used in a single pattern.

The rbs function shown in Listing 14 has been defined using both patterns and
guard expressions. Guard expressions are logical expressions used as the second
step of choosing the appropriate piece of a function definition. In this case, guards
have been defined using values of condition attributes – the symbol | is read as
”such that”.

Let us focus on the completeness property. To check the property, we have to
generate the state space for the rule-based system under consideration. An argu-
mentless function states is used for this purpose (see Listing 15). The function takes
the attributes domains under consideration and generates a list of all admissible in-
put states. To verify a Haskell implementation of a decision table, we have to define
another function that determines all possible decisions for an input situation or gen-
erates an empty list, if no decision can be undertaken. The allDecisions function
is used for this purpose. The function checks all rules and generates the list of all
possible decisions for a given input state. The list contains pairs – a decision rule
number and the corresponding result. The +!+ operator, used in the code, states for
lists concatenation with dropping duplicates.

The result of the completeness analysis is a list of input states that are not covered
by decision rules. To check whether an input state is covered the notCovered func-
tion is used (see Listing 15). The function is used by the notCoveredStates function,
which filters not covered states from the list generated by the states function.
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states :: [Condition]
states = [(l,f,r) | l <- [0 .. 255], f <- [0 .. 255],

r <- [0 .. 255]]

allDecisions’ :: Int -> Condition -> [(Int, Decision)]
allDecisions’ i (l,f,r)

| i == 1 && l > 30 && f > 30 && r > 30
= [(1, (1,1))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 2 && l <= 30 && f <= 30 && r <= 30
= [(2, (-1,-1))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 3 && l <= 30 && f <= 30 && r > 30
= [(3, (1,-1))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 4 && l <= 30 && f > 30 && r > 30
= [(4, (1,0))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 5 && l > 30 && f > 30 && r <= 30
= [(5, (0,1))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 6 && l > 30 && f <= 30
= [(6, (-1,1))] +!+ allDecisions’ (i + 1) (l,f,r)

| i == 7 && l <= 30 && f > 30 && r <= 30
= [(7, (-1,1))]

| i > 7
= []

| otherwise
= allDecisions’ (i + 1) (l,f,r)

allDecisions :: Condition -> [(Int, Decision)]
allDecisions = allDecisions’ 1

notCovered :: Condition -> Bool
notCovered (l,f,r) = allDecisions (l,f,r) == []

notCoveredStates :: [Condition]
notCoveredStates = filter notCovered states

Listing 15 Completeness verification code

The other properties are verified in similar way. The results of the considered
rule-based system verification are shown in Listing 16.

*RBSRobot> notCoveredStates
[]

*RBSRobot> notDeterministicStates
[]

*RBSRobot> independentRules
[1,2,3,4,5,6,7]

Listing 16 Verification results – GHCi shell log

Overall, the function rbs presented in Listing 14 is ready to be included into an
Alvis model.
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Fig. 8 Primary page of the WMC system

Fig. 9 Subpage of the WMC system

7 Alvis model example

This section presents an Alvis model of a wheels’ motors control system (WMC
system for short) for a mobile robot. The system uses the rbs function presented in
the previous section.

The primary (top level) page of the model is given in Fig. 8. It contains a sin-
gle hierarchical agent that stands for the whole system. All ports of the agent are
border ports used to collect sensors readings or to send control decisions to the sys-
tem environment. The subpage assigned with the hierarchical agent is presented in
Fig. 9. It contains two agents that work concurrently. The Obstacle agent is respon-
sible for collecting infrared sensors readings and taking decisions for the Movement
agent. The Obstacle agent uses the rule-based system presented in Section 6. The
Movement agent controls the wheels motors.

The preamble of the model code layer is presented in Listing 17. The rbs function
is placed inside it.
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type Move = (Int, Int);
data Mode = Stop | Forward | Collide | Obstacle;
type Condition = (Int, Int, Int);
type Decision = (Int, Int);

rbs :: Condition -> Decision;
rbs (l,f,r)
-- ...

environment {
out l [0..255] [];
out f [0..255] [];
out r [0..255] [];
out mode Mode [];
in lm Int [];
in rm Int [];

}

Listing 17 WMC system code layer – preamble

agent Obstacle {
m :: Motors = (0,0);
lv :: Int = 255;
fv :: Int = 255;
rv :: Int = 255;
loop {

in l lv;
in f fv;
in r rv;
m = rbs (l,f,r);
if(ready [out(motors)]) {

out motors m;
}

}
delay 20;

}

Listing 18 WMC system code layer – agent Obstacle definition

The Obstacle agent definition is given in Listing 18. The main statement in the
code is an infinite loop. The agent collects infrared sensors readings, uses the rbs
function to take a decision, send the decision through the motors port and finally
delays 20 milliseconds.

The Movement agent definition is given in Listing 19. The main statement in
the code is also an infinite loop. The agent collects a decision through the mo-
tors_obstacle port (if any) and sends control decisions to wheels motors.
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agent Movement{
rmv :: Int = 0;
lmv :: Int = 0;
m :: Motors = (0,0);
mod :: Mode = Stop;
loop {

if(ready [in(mode)]) {
in mode mod; }

if (mod == Forward) {
out lm 1;
out rm 1; }

elseif(mod == Collide) {
in motorsObstacle m;
lmv = snd m;
rmv = fst m;
out lm lmv;
out rm rmv; }

elseif(mod == Obstacle) {
in motorsObstacle m;
lmv = fst m;
rmv = snd m;
out lm lmv;
out rm rmv; }

else {
out lm 0;
out rm 0; }

}

Listing 19 WMC system code layer – agent Movement definition

8 Agent and model state

An Alvis model is a triple that contains a communication diagram, a code layer and
a system layer. A state of a model is represented as a sequence of agents states. To
describe the current state of an agent, we need a tuple with four pieces of informa-
tion:

• agent mode (am);
• program counter (pc);
• context information list (ci);
• parameters values tuple (pv).

Let us focus on passive agents firstly. A passive agent is always in one of two
modes: waiting or taken. The former one means that the agent is inactive and waits
for another agent to call one of its accessible procedures. In such a situation the
program counter is equal to zero and the context information list contains names of
accessible procedures. In any state, the parameters values list contains the current
values of the agent parameters. The taken mode means that one of the passive agent
procedures has been called and the agent executes it. In such a case, ci contains the
name of the called procedure (i.e. the name of the port used for current communica-
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Fig. 10 Possible transitions
among modes (without the
ready mode).

initfinished

running waiting

tion). The pc points out the index of the next statement to be executed or the current
statement if the corresponding active agent is waiting.

An active agent can be in one of the following modes: finished, init, ready, run-
ning, waiting. (The ready is not used with the α0 system layer.) An Alvis model
contains a fixed number of agents. In other words, there is no possibility to create
or destroy agents dynamically. If an active agent starts in the init mode, it is inac-
tive until another agent activates it with the start statement. Active agents that are
initially activated are distinguished in the communication diagram – their names are
underlined. If an agent is in the init mode, its pc is equal to zero and ci is empty.

The finished mode means that an agent has finished its work or it has been ter-
minated using the exit statement. The statement is argumentless and an agent can
terminate its work itself only. If an agent is in the finished mode, its pc is equal to
zero and ci is empty.

The waiting mode means that an active agent is waiting either for a synchronous
communication with another active agent, or for a currently inaccessible procedure
of a passive agent. In such a case, the pc points out the index of the current statement
and ci contains names of the agent ports that can be used for the desired communi-
cation.

The last mode running used here means that an agent is performing one of its
statements. If it is a synchronous communication with another active agent or a pro-
cedure call, then the used port’s name and the other agent’s name (for procedures)
are placed into ci. The pc points out the index of the current (e.g. for procedure call)
or next agent statement. All possible transitions among modes of an active agent are
shown in Fig. 10.

It is very important to explain the way Alvis statements are marked with numbers.

• We say that pc points out an exec (exit, in, jump, null, out, start) statement iff the
next statement to be executed is an exec (exit, in, jump, null, out, start) statement.

• We say that pc points out an if statement iff the next statement to be executed is
the evaluating of the guard and entering one of the if statement alternatives.

• We say that pc points out a loop statement iff the next statement to be executed
is the evaluating of the guard (if any) and entering the loop statement.

• We say that pc points out a select statement iff the next statement to be executed
is entering the select statement and possibly one of its branches.

It is worth emphasizing the difference between two types of communication in
Alvis. A communication between two active agents can be initialised by any of
them. The agent that initialises it, performs the out statement to provide some in-
formation and waits for the second agent to take it, or performs the in statement to
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express its readiness to collect some information and waits until the second agent
provides it.

On the other hand, a communication between an active and a passive agent can
be initialised only by the former. Any procedure in Alvis uses only one either input
or output parameter (or signal in case of parameterless communication). In case
of an input procedure, an active agent calls the procedure using the out statement
(and provides the parameter, if any, at the same time). If the corresponding passive
agent is in the waiting mode and the procedure is accessible, the agent starts it in
the active agent context. The passive agent collects the signal/parameter using the
in statement, but it is not necessary to put the statement as the first procedure step.
Similarly, in case of an output procedure, an active agent calls the procedure using
the in statement. The passive agent returns the result using the out statement, but it
is not necessary to put the statement as the last procedure step.

0:
Obstacle: (running,1,[],((0,0),255,255,255))
Movement: (running,1,[],(0,0,(0,0),Stop))

Listing 20 WMC system – initial state

The initial state for the considered WMC system is presented in Listing 20. We
consider behaviour of Alvis models at the level of detail of single steps. Each Alvis
statement is treated as a single step transition. Thus, we consider, for example, texec
transition (executing the exec statement), tloop transition (entering a loop) etc. Each
step is realised in the context of one active agent. Also procedures of passive agents
are realised in the context of active agents that called them.

States of an Alvis model and transitions among them are represented using a
labelled transition system (LST graph for short). A LTS graph is an ordered graph
with nodes representing states of the considered system and edges representing tran-
sitions among states. A small part (the textual representation) of the LTS graph for
the WMC system is presented in Listing 21.

A LTS graph is generated automatically for a model and stored in a textual
file. For verification purposes such graphs are transformed into the Binary Coded
Graphs (BCG) format. Finally, its properties are verified with the CADP (Construc-
tion and Analysis of Distributed Processes) toolbox [Garavel et al(2007)]. CADP
offers a wide set of functionalities, ranging from step-by-step simulation to mas-
sively parallel model-checking.

9 Summary

An informal description of the Alvis modelling language has been given in the chap-
ter. Defined for the concurrent systems design, Alvis seems to be more useful for en-
gineers than classical formal methods. The main differences between Alvis and for-
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4: Obstacle: (running,3,[],((0,0),50,255,255))
Movement: (running,3,[],(0,0,(0,0),Stop))

in(Obstacle.f(90)) -> 5
5: Obstacle: (running,4,[],((0,0),50,90,255))

Movement: (running,3,[],(0,0,(0,0),Stop))
in(Obstacle.r(100)) -> 6

6: Obstacle: (running,5,[],((0,0),50,90,100))
Movement: (running,3,[],(0,0,(0,0),Stop))

in(Movement/Obstacle) -> 7
7: Obstacle: (running,5,[],((0,0),50,90,100))

Movement: (running,4,[],(0,0,(0,0),Obstacle))
exec(Obstacle/rbs) -> 8

8: Obstacle: (running,6,[],((1,1),50,90,100))
Movement: (running,4,[],(0,0,(0,0),Obstacle))

if(Movement) -> 9
9: Obstacle: (running,6,[],((1,1),50,90,100))

Movement: (running,7,[],(0,0,(0,0),Obstacle))
if(Movement) -> 10

10: Obstacle: (running,6,[],((1,1),50,90,100))
Movement: (running,13,[],(0,0,(0,0),Obstacle))

if(Movement) -> 11
11: Obstacle: (running,6,[],((1,1),50,90,100))

Movement: (running,14,[],(0,0,(0,0),Obstacle))
in(Movement.motorsObstacle) -> 12

12: Obstacle: (running,6,[],((1,1),50,90,100))
Movement: (waiting,14,[out(Obstacle.motors)],

(0,0,(0,0),Obstacle))
if(Obstacle) -> 13

13: Obstacle: (running,7,[],((1,1),50,90,100))
Movement: (waiting,14,[out(Obstacle.motors)],

(0,0,(0,0),Obstacle))
out(Obstacle.motors) -> 14

14: Obstacle: (running,8,[],((1,1),50,90,100))
Movement: (waiting,14,[out(Obstacle.motors)],

(0,0,(0,0),Obstacle))
delay(Obstacle) -> 15

15: Obstacle: (waiting,1,[timer(20)],((1,1),50,90,100))
Movement: (waiting,14,[out(Obstacle.motors)],

(0,0,(0,0),Obstacle))
in(Movement.motorsObstacle) -> 16

16: Obstacle: (waiting,1,[timer(20)],((1,1),50,90,100))
Movement: (running,14,[],(0,0,(0,0),Obstacle))

in(Movement.motorsObstacle) -> 17
17: Obstacle: (waiting,1,[timer(20)],((1,1),50,90,100))

Movement: (running,15,[],(0,0,(1,1),Obstacle))

Listing 21 WMC system – part of the LTS graph

mal methods, especially process algebras, are: the syntax that is more user-friendly
from engineers point of view, and the visual modelling language (communication
diagrams) that is used to define communication among agents.
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The Alvis language can be used for modelling systems that are composed of
distributed elements that work concurrently. Thus, it is suitable both to design em-
bedded systems with concurrent processes and distributed systems with many com-
municating nodes. One of the main advantages of the language is the possibility of
models formal verification using proven model checking techniques. An LTS graph
is a formal representation of the considered concurrent system. The properties of
the LTS graph can be formally verified with utilization of the CADP toolbox.

Due to the fact that many embedded systems or agents in multiagent systems use
rule-based systems to support the decision process, Alvis has been equipped with
a possibility of including decision tables into the model. As shown in the chapter,
encoding a decision table as a Haskell function allows a designer to include a rule-
based system into the code layer of an Alvis model.
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