
Int. J. Appl. Math. Comput. Sci., , Vol. , No. , –
DOI:

FORMAL INTRODUCTION TO ALVIS MODELLING LANGUAGE

MARCIN SZPYRKA ∗ , PIOTR MATYASIK ∗ , RAFAŁ MRÓWKA ∗ , LESZEK KOTULSKI ∗ ,
KRZYSZTOF BALICKI ∗∗

∗ Department of Automatics
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: mszpyrka,ptm,Rafal.Mrowka,kotulski@agh.edu.pl

∗∗Institute of Mathematics
Rzeszów University, Al. Rejtana 16A, 35-959 Rzeszów, Poland

e-mail: kbalicki{@}univ.rzeszow.pl

The paper presents a formal introduction to Alvis, a novel modelling language designed for embedded systems. Alvis has
been defined as a kind of a happy medium between formal and practical modelling languages. It combines possibilities
of formal models verification with flexibility and simplicity of practical programming languages. Even though Alvis has
its origin in process algebras, it combines flexible graphical modelling of interconnections among agents with a high level
programming language used for the description of agents behaviour. Users can choose one of a few varieties of Alvis
semantics that depend on the so-called system layer. The most universal system layer is denote by α0 and makes Alvis
similar to other formal languages like Petri nets, process algebras, time automata, etc. Alvis with α0 system layer seems to
be valuable modelling language for concurrent systems.

Keywords: Alvis modelling language, embedded systems, formal verification

1. Introduction

The aim of the paper is to present a formal descrip-
tion of the Alvis modelling language with the α0 sys-
tem layer. Alvis is a successor of the XCCS mod-
elling language (Szpyrka and Matyasik, 2008), (Balicki
and Szpyrka, 2009), (Matyasik, 2009), which was an
extension of the CCS process algebra (Milner, 1989),
(Fencott, 1995), (Aceto et al., 2007).

Alvis combines hierarchical graphical modelling
with a high level programming language. A model con-
sists of three layers. The graphical layer is used to define
data and control flow among agents, where agent denotes
any distinguished part of the system under consideration
with defined identity persisting in time. The code layer is
used to describe behaviour of individual agents. Instead
of algebraic equations, Alvis uses a high level program-
ming language based on the Haskell syntax for this pur-
pose. Moreover, Haskell is used to define data types for
parameters and to define functions for data manipulation.
The third system layer is the predefined one. It gathers
information about all agents in a model and their states.
Moreover, choosing one of accessible system layers en-

tails choosing a scheduling algorithm and hardware archi-
tecture for the model. The system layer is also used e.g.
for generation of an LTS (labelled transition system) graph
for a model.

Alvis as well as other formal methods like process al-
gebras, Petri nets or time automata, can be used for mod-
elling concurrent systems. In contrast with these meth-
ods, Alvis has been worked out especially for embedded
systems and can be used for mapping both software and
hardware aspects of an embedded system at the same time.
Thus, an Alvis model may describe not only an applica-
tion, but also selected elements of an operating system and
a hardware that are essential from the considered system
point of view. In our opinion, such holistic approach to
the design of embedded systems is more valuable than
approaches that disregard the operating system and hard-
ware aspects. Moreover, Alvis seems to be more user-
friendly, from engineering point of view, than classical
formal methods.

Similar to other formal methods, Alvis provides
a possibility of formal verification of models. An Alvis
model can be transformed into a labelled transition sys-

mszpyrka,ptm,Rafal.Mrowka,kotulski@agh.edu.pl
kbalicki{@}univ.rzeszow.pl

2 M. Szpyrka, et. al

tem (LTS). After encoding such graph using the Binary
Coded Graphs (BCG) format, its properties are verified
with the CADP toolbox (Garavel et al., 2007).

The paper is organised as follows. Section 2 con-
tains a review of other modelling languages used for em-
bedded systems development and their comparison with
Alvis. The α0 system layer is described in Section 3. Sec-
tion 4 presents the main features of communication dia-
grams. Section 5 describes Alvis statements used in the
code layer. A formal definition of an Alvis model is given
in Section 6. Section 7 deals with a formal description of a
model dynamic and Section 8 describes LTS graphs used
for verification purposes. A short summary is given in the
final section.

2. Related works
Real-time and embedded systems are a strictly distin-
guished type of computer systems with a set of program-
ming languages used for them in industry. Alvis is a novel
proposition for such systems with following advantages:

• a graphical modelling language used to define inter-
connections among agents;

• a high level programming language used to define
behaviour of individual agents (instead of algebraic
equations);

• a possibility of a formal model verification.

This section provides a short comparison of Alvis with
other modelling languages used in industry for the em-
bedded systems development.

E-LOTOS is an extension of the LOTOS modelling
language (Language Of Temporal Ordering Specifica-
tion) (ISO, 1989). The main intention of the E-LOTOS ex-
tension was to enable modelling of the hardware layer of
a system. Thus, in the specification, we can find such arti-
facts as interrupts, signals, and the ability to define events
in time. With such extensions, E-LOTOS significantly ex-
panded the possibility of using the algebra of processes,
which is the starting point for the specification in this lan-
guage.

It should be noted that the Alvis language has many
features in common with E-LOTOS. First of all, Alvis as
E-LOTOS is derived from process algebras. Alvis, like
E-LOTOS, was intended to allow formal modelling and
verification of distributed real-time systems. To meet the
requirements, Alvis provides a concept of time and a delay
operator. In contrast to E-LOTOS, Alvis provides graphi-
cal modelling language. Moreover, Alvis toolkit supports
a LTS graph generation, which significantly simplifies the
formal verification of models.

Esterel (Berry, 2000), (Palshikar, 2001) is a high-
level formal synchronous language created to program re-
active systems at a cycle-accurate behavioral level. The

original textual language was later complemented by the
SyncCharts (Andre, 2003) hierarchical automata graphi-
cal formalism (now called Safe State Machines or SSMs
in Esterel). Textual and graphical specifications can be
freely mixed. Esterel encompasses state sequencing, sig-
nal emission and reception, concurrency, and preemption
structures to drive the life and death of control component
behaviours in a hierarchical way.

Esterel is one of a family of synchronous languages.
It uses the broadcast as the unique communication mech-
anism. The broadcast mechanism means that a signal can-
not have any destination specified; all signals are broad-
cast and any module may listen to and read an emitted
signal. Also, signals do not have any unique identifier. In
contrast to Esterel, Alvis uses synchronous communica-
tion model similar to Ada’s hand shaking or agents com-
munication in the CCS process algebra. Agents in Alvis
may communicate one with another only if a communica-
tion channel between their ports is explicitly defined. Both
Alvis and Esterel support pure and value passing commu-
nication.

SCADE (Est, 2007) is a product developed by the
Esterel Technologies company. It is a complex tool for
developing a control software for embedded critical sys-
tems and for distributed systems. A system is described
as an input to output transformation. In every cycle inputs
are transformed to outputs according to a specification
provided by functions: linear and discrete and state ma-
chine. SCADE allows system developer to choose from
a large library of predefined components. The KCG code
generator, which is a part of the SCADE suite, produces C
code that has all the properties required for safety-critical
software. SCADE also provides tools for checking system
specification and verification of the developed model.

The Alvis approach is very different. The system in
Alvis is represented as a set of communicating tasks which
are continuously processing their instructions. Alvis also
has no code generation phase, because it is an executable
specification itself. Moreover, the system verification in
Alvis is based on an LTS graph generation instead of
specification-model consistency and statical code check-
ing. SCADE and Alvis have also different approaches
to types. The first one adopts simple static C language
types due to specific runtime requirements, while the sec-
ond one uses the Haskell type system.

System Modelling Language (SysML)(Obj, 2008)
aims to standardize a process of a system specification
and modelling. The original language specification was
developed as an open source project on behalf of the In-
ternational Council on Systems Engineering INCOS and
the Object Management Group (OMG). SysML is a gen-
eral purpose modelling language for systems engineering
applications. In particular, it adds two new types of dia-
grams: requirement and parametric diagrams. The Alvis
language has many common features with the SysML

Formal introduction to Alvis modelling language 3

block diagrams and activity diagrams: ports, property
blocks, communication among the blocks, hierarchical
models. Unlike SysML, Alvis combines structure dia-
grams (block diagrams) and behaviour (activity diagrams)
into a single diagram. In addition, Alvis defines formal se-
mantics for the various artifacts, which is not the case in
SysML. The concept of agent in Alvis corresponds with
the SysML block definition. The formal semantics of
Alvis allows you to create automated tools for verifica-
tion, validation and runtime of Alvis models. SysML is a
general-purpose systems modelling language, which cov-
ers most of the software engineering phases from anal-
ysis to testing and implementation. Alvis is focused on
the structural model, the behavioural aspects of the sys-
tem and formal verification of its properties. Its main area
of application are distributed and embedded real-time sys-
tems. Alvis can be used as an extension to the software
engineering process based on SysML.

Another solution used for years in industry is the
Very High Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) (Ashenden, 2008). This language
allows for a specification, development and verification of
digital circuits. The syntax of VHDL is based on the struc-
tures found in programming languages such as Pascal and
Ada. VHDL provides a hierarchical construction of mod-
els, similar to SysML and Alvis. The concept of agent
in Alvis is represented as a design entity in VHDL. The
design entity consists of an entity definition and a body
architecture. Communication with the environment takes
place through declared ports like in Alvis. The body of
a design entity contains the following blocks: value-signal
assignments, processes and components. Processes allow
designers to specify concurrent systems, whereas compo-
nents enable them to decomposite and combine multiple
modules into one system. Due to the Ada origins, VHDL
and Alvis have a similar syntax for the communication
and parallel processing. However, it should be noted that
Alvis is closely linked with its graphical model layer. The
graphical composition allows users for an easy identifi-
cation of a system hierarchy and components. The main
purpose of VHDL is a specification of digital electronic
circuits and it focuses on a system hardware. However,
Alvis integrates the hardware and the software view of a
system. In this way, Alvis allows for a comprehensive
verification and validation of modelled systems.

3. System layer
The system layer (or meta-data layer) is the predefined
one. It is necessary for a model simulation and analysis.
From users point of view the layer works in the read-only
mode. It gathers information about all agents in a model
and their states. Agents can retrieve some data from the
layer, but they cannot directly change them. The system
layer provides some functions that are useful for imple-

mentation of scheduling algorithms or for retrieving in-
formation about other agents states.

User can choose one of a few versions of the layer
but it affects the developed model semantic. The sys-
tem layer is strictly connected with the system architecture
and the chosen operating system. Alvis has been worked
out especially for embedded systems. One of the starting
points for Alvis development has been an analysis of At-
mel NGW100 single-board computer, which runs AVR32
microprocessor, and FreeRTOS real-time operating sys-
tem for embedded devices. Alvis can be used for mapping
both software and hardware aspects of an embedded sys-
tem at the same time. Thus, an Alvis model may contain
not only the application under consideration, but also se-
lected elements of its operating system and hardware that
are essential from the considered system point of view.

System layers differ in scheduling algorithms and
system architectures mainly. There are considered two ap-
proaches to the scheduling problem. System layers with
α symbol provide a predefined scheduling function that is
called after each step automatically. On the other hand,
system layers with β symbol do not provide such a func-
tion. User must define a scheduling function himself.

Both α and β symbols are usually extended with
some indicators put in the superscript or/and subscript.
An integer put in the superscript denotes the number of
processors in the system. Zero is used to denote the un-
limited number of processors. A symbol put in the sub-
script denotes the selected system architecture or/and cho-
sen scheduling algorithm.

In this paper we consider only the α0 system layer.
This layer makes Alvis an universal formal modelling lan-
guage similar to Petri nets or process algebras. The α0

layer scheduler is based on the following assumptions.

• Each active agent has access to its own processor and
performs its statements as soon as possible.

• The scheduler function is called after each statement
automatically.

• In case of conflicts, agents priorities are taken under
consideration. If two or more agents with the same
highest priority compete for the same resources, the
system works indeterministicly.

A conflict is a state when two or more active agents
try to call a procedure of the same passive agent or
two or more active agents try to communicate with
the same active agent.

4. Communication diagrams
Communication diagrams are the visual part of the Alvis
modelling language. They are used to represent the struc-
ture of the system under consideration. A communica-
tion diagram is a hierarchical graph that nodes may repre-

4 M. Szpyrka, et. al

sent both agents (active or passive) and parts of the model
from the lower level. They are the only way, in Alvis,
to point out agents that communicate one with the other.
Moreover, the diagrams allow programmers to combine
sets of agents into modules that are also represented as
agents (called hierarchical agents). It should be under-
lined that a communication diagram is only a part of an
Alvis model. The complete model consists of three layers
(graphical, code, system).

4.1. Non-hierarchical diagrams. Alvis provides hi-
erarchical communication diagrams used to describe an
embedded system from the control and data flow point
of view. A hierarchical diagram enable designers to dis-
tribute parts of a diagram across multiple subdiagrams
called pages. Pages are combined using the so-called sub-
stitution mechanism. An active agent at one level can
be replaced by a page on the lower level, which usually
gives a more precise and detailed description of the ac-
tivity represented by the agent. Such a substituted agent
is called hierarchical one. Replacing hierarchical agents
with corresponding subpages results in an equivalent non-
hierarchical diagram. Thus, at the beginning, we will pro-
vide a formal definition of non-hierarchical diagrams, and
next we will describe hierarchical mechanisms.

Let us focus on non-hierarchical diagrams in this
subsection. Let A denote an Alvis model (with a non-
hierarchical communication diagram). Graphical and
code layers of a model are closely related one to the other.
Each agent from a communication diagram is described in
the corresponding code layer and vice versa.

An agent can communicate with other agents through
ports. There is no distinction between input and output
ports on communication diagrams. Any port can be used
as an input or output one. Each agent port must have
a unique identifier (name) assigned, but ports of differ-
ent agents may have the same identifier assigned. Thus,
each port in a model is identified using its name and its
agent name. For simplicity, we will used the so-called dot
notation – X.p denotes the port p of the agent X .

Let us define the following symbols.

• P(X) denotes the set of ports of the agent X .

• P(D) denotes the set of ports of the diagram D (the
page D).

• N (W) denotes the set of names of ports belonging
to the set W .

For example, if a diagram contains only agents: X1

with port p and X2 also with port p, then P(D) =
{X1.p,X2.p}, and N (P(D)) = {p}.

Definition 1. A Non-hierarchical communication dia-
gram is a triple D = (A, C, σ), where:

• A = {X1, . . . , Xn} is the set of agents consisting of
two disjoint sets, AA, AP such that A = AA ∪ AP ,
containing active and passive agents respectively.

• C ⊆ P × P is the communication relation, such that

∀i = 1, . . . , n (P(Xi)× P(Xi)) ∩ C = ∅, (1)

where
P =

⋃
i=1,...,n

P(Xi). (2)

Each element of the relation C is called a connection
or a communication chanel.

• σ : AA → {False,True} is the start function that
points out initially activated agents.
The condition (1) means that two ports of the same

agent cannot be connected. The start function σ makes
possible delaying activation of some agents (We can make
them active later with the start statement.

An example of a communication diagram is shown
in Fig. 1. Active agents are drawn as rounded boxes while
passive ones as rectangles. An agent’s identifier (name) is
placed inside the corresponding shape. The first character
of the identifier must be an upper-case letter. Other char-
acters (if any) must be alphabetic characters, either upper-
case or lower-case, digits, or an underscore. Alvis iden-
tifiers are case sensitive. Moreover, the Alvis keywords
cannot be used as identifiers. Names of agents that are
initially activated (represent running processes) are under-
lined.

Ports are drawn as circles placed at the edges of the
corresponding rounded box or rectangle. Ports names
must fulfil the same requirements as agents identifiers, but
the first character of a port name must be an lower-case
letter.

A communication channel is defined explicitly be-
tween two agents and connects two ports. Communication
channels are drawn as lines (or broken lines). An arrow-
head points out the input port for the particular connec-
tion. Communication channels without arrowheads repre-
sent pairs of connections with opposite directions.

4.2. Hierarchical communication diagrams. On the
other hand, a part of a communication diagram can be
treated as a module and represented by a single agent at
the higher level. Thus, communication diagrams support
both top-down and bottom-up approaches. For the effec-
tive modelling Alvis communication diagrams enable dis-
tributing parts of a diagram across multiple subdiagrams
called pages. Pages are combined using the so-called sub-
stitution mechanism. An active agent at one level can be
replaced by a page on the lower level, which usually gives
a more precise and detailed description of the activity rep-
resented by the agent. Such a substituted agent is called

Formal introduction to Alvis modelling language 5

Buffer

b_outb_in

Sender

s_out

Receiver

r_in

Fig. 1. Sender-Receiver system with buffer – communication diagram.

hierarchical one. All ports of a hierarchical agent must
appear on the corresponding subpage.

A hierarchical communication diagram consists of a
set of pages.

Definition 2. A page in a hierarchical communication
diagram is a triple Di = (Ai, Ci, σi), where:

• Ai = {Xi
1, . . . , X

i
n} is the set of agents with subsets

of active agents Ai
A, passive agents Ai

P , and hierar-
chical agents Ai

H , such that Ai = Ai
A ∪ Ai

P ∪ Ai
H ,

and Ai
A, Ai

P , Ai
H are pairwise disjoint.

• Ci and σi are defined as in Definition 1.

A page of a hierarchical communication diagram is
shown in Fig. 2. The main difference between a non-
hierarchical and hierarchical communication diagram is
that the latter may contain hierarchical agents. They are
are indicated by black triangles. A page without hierar-
chical agents is simply a non-hierarchical communication
diagram.

Let a hierarchical agent Y be given and let
joinY (D

i) denotes the set of all join ports of the page
Di with respect to Y , i.e.

joinY (D
i) = {Xi

j .p ∈ P(Di) : N (Xi
j .p) ∈ N (P(Y))}.

(3)
In other words, joinY (D

i) is the set of all ports from the
page Di that names are the same as those of the hierarchi-
cal agent Y .

Definition 3. Let a hierarchical agent Y and a pageDi =
(Ai, Ci, σi) be given.

• The agent Y and the page Di satisfy the simple sub-
stitution requirements, iff

card(P(Y)) = card(joinY (D
i)), (4)

and

(joinY (D
i)× joinY (D

i)) ∩ Ci = ∅, (5)

• The agent Y and the page Di satisfy the extended
substitution requirements, iff

card(P(Y)) < card(joinY (D
i)) (6)

and the equality (5) holds.

We will consider a binding function π that maps ports
of a hierarchical agent to the join ports of the correspond-
ing page. In the case of a simple substitution, the binding
function π is a bijection. On the other hand, in the case of
an extended substitution, one port of a hierarhical agent
may have assigned more than one join port on the sub-
page.

Let us recall the definition of a labelled directed
graph.

Definition 4. A labelled directed graph is a triple G =
(V,E, L), where:

• V is the set of nodes.

• L is the set of edge labels.

• E ⊆ V × L× V is the set of edges.

Definition 5. A hierarchical communication diagram is
a pair H = (D, γ), where:

• D = {D1, . . . , Dk} is the set of pages of the hi-
erarchical communication diagram, such that sets of
agents Ai (i = 1, . . . , k) are pairwise disjoint.

• γ : AH → D, where AH =
⋃

i=1,...,kAi
H , is the

substitution function, such that:

1. γ is an injection.

2. For any Xi
j ∈ AH , Xi

j and γ(Xi
j) satisfy the

requirements of the simple or extended substi-
tution.

3. Labelled directed graph G = (D, E,AH)
where (Di, Xi

k, D
j) ∈ E iff γ(Xi

k) = Dj is
a tree or a forest.

The labelled directed graph defined above is called
a page hierarchy graph. Nodes of such a graph repre-
sent pages, while edges (labelled with names of hierar-
chical agents) represent the substitution function γ. Each
edge represents the page to which belongs the hierarchical
agent (used as label) and the subpage associated with the
agent.

We assume that system definition starts from a page
or a sets of page, thus the number of pages must be greater
than the number of hierarchical agents. Formally pages
from the set D − γ(AH) are called primary pages, They
are roots of trees that constitute a page hierarchy graph.

Following symbols are valid for hierarchical commu-
nication diagrams:

6 M. Szpyrka, et. al

Library

r_out

r_in

w_out

w_inr_in

r_out

w_in

w_out

Readers Writers

Fig. 2. Readers-Writers system – top level page of the communication diagram.

d

A

b

a

c

e
B C

f h

g

Fig. 3. Page D1.

D E

F

j l

m n

ed

i k

f

Fig. 4. Page D2.

• AA =
⋃

i=1,...,kAi
A,

• AP =
⋃

i=1,...,kAi
P ,

• A = AA ∪ AP ,

• σ : AA → {False,True} and ∀i = 1, . . . , k ∀Xi
j ∈

Ai
A : σ(Xi

j) = σi(Xi
j).

To define the global set of connections, we have
to take into account not only connections from sets Ci,
but also connections resulting from replacing hierarchical
agents with subpages. For any page Di we define a set of
hierarchical connections CiH as follows:

CiH ={(Xj
l .p,X

i
m.q) : ∃Xj

n ∈ A
j
H∧

(Xj
l .p,X

j
n.q) ∈ Cj ∧ γ(Xj

n) = Di} ∪
{(Xi

m.q,X
j
l .p) : ∃X

j
n ∈ A

j
H∧

(Xj
n.q,X

j
l .p) ∈ C

j ∧ γ(Xj
n) = Di}

(7)

Finally, the global set of hierarchical connections CH is
the sum:

CH =
⋃

i=1,...,k

Ci ∪ CiH . (8)

An example of the simple substitution is shown in
Fig. 3 and 4. The page shown in Fig. 4 is assigned to the
agent B. The following equalities hold.

• P(B) = {B.d,B.e,B.f}

• joinB(D
2) = {D.d,E.e, F.f}

• N (P(B)) = {d, e, f} = N (joinB(D
2))

Of course, the binding function binds ports with the same
names.

r_in

r_out

r_in

r_out

Reader3

Reader4r_in

r_out

r_in

r_out

Reader1

Reader2

Fig. 5. Readers-Writers system – page pReaders.

Writer1w_in

w_out

Writer2w_in

w_out

Fig. 6. Readers-Writers system – page pWriters.

An example of the extended substitution is shown in
Fig. 2, 5 and 6. The page hierarchy graph for the readers-
writers model is shown in Fig. 7.

Both substitions used in the considered model are the
extended ones. Let focus on the Readers agent. The fol-
lowing equalities hold:

• P(Readers) = {Readers.r_in,Readers.r_out}

• joinReaders(pReaders) = {Reader1.r_in,
Reader1.r_out,Reader2.r_in,Reader2.r_out,
Reader3.r_in,Reader3.r_out,Reader4.r_in,
Reader4.r_out}

Formal introduction to Alvis modelling language 7

pSystem

pWriterspReaders

WritersReaders

Fig. 7. Page hierarchy graph

• N (P(Readers)) = {r_in, r_out} =
N (joinReaders(pReaders))

In this case, the binding function π is defined as follows:

• π(Readers.r_in) =
{Reader1.r_in, . . . , Reader4.r_in}

• π(Readers.r_out) =
{Reader1.r_out, . . . , Reader4.r_out}

Instead of local binding functions, we can consider
one global function π:

π :
⋃

X∈AH

P(X)→ 2P . (9)

The function π satisfies the following conditions:

∀X ∈ AH ∀X.p ∈ P(X) : π(X.p) ⊆ joinX(γ(X)),(10)
∀X ∈ AH ∀X.p ∈ P(X) : N (π(X.p)) = {p}. (11)

If a communication diagram contains only simple
substitutions, then the function (9) takes the simplified
form:

π :
⋃

X∈AH

P(X)→ P, (12)

and the condition (10):

∀X ∈ AH ∀X.p ∈ P(X) : π(X.p) ∈ joinX(γ(X)).
(13)

It can be useful to designate relations between hier-
archical agent and agents belonging to its subpage.

Definition 6. Let X ∈ AH and a page Di such that
γ(X) = Di be given. For any agent Y ∈ Ai we say that
X is directly hierarchically dependent on Y and we will
denote it as X � Y .

4.3. Hierarchy elimination. The possibility of substi-
tution of an abstract description of an agent by a more
detailed one represented by a submodel (subpage) it is
very common in a system design. It is however difficult
when we would like to understand (or verify) a behaviour
of a whole system, associations among their components
and so on. Thus, in this section we introduce the flat (non-
hierarchical) abstraction of a system represented by its hi-
erarchical communication diagram. In this representation
we will use only agents and connections among them in-
herited from the hierarchical communication diagram.

Definition 7. For any two agents X ∈ AH and Y ∈ A,
X is said to be hierarchically dependent on Y , denoted
as X � Y , iff X = Y1 � . . . � Yk = Y for some
Y1, . . . , Yn ∈ A.

Definition 8. A flat representation of a communication
diagram H = (D, γ) is the triple (F , C′, σ′) such that:

1. ∀X,Y ∈ F ⊆ A : X � Y ,

2. ∀X ∈ A−AH ∃Y ∈ F : Y � X ,

3. C′ = {(X.p, Y.q) ∈ CH : X,Y ∈ F},

4. σ′ = σ|AA∩F .

It is easy to check that the set of primary pages is
a flat representation of a system represented by a hierar-
chical communication diagram.

We can move from one flat system representation to
another, more detailed one, using the analysis operation.

Definition 9. Let H be a hierarchical communication
diagram, (F , C′, σ′) be a flat representation of H , X ∈
AH ∩ F and γ(X) = Di = (Ai, Ci, σi). Analysis of the
flat representation (F , C′, σ′) of the hierarchical diagram
H in context of X is the flat representation (F∗, C∗, σ∗)
(denoted AN(H,F , X)), such that:

1. F∗ = F − {X} ∪ Ai,

2. C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},

3. σ∗ = σ|AA∩F∗ .

Definition 10. Let H be a hierarchical communica-
tion diagram, (F , C′, σ′) be a flat representation of H ,
Y ∈ F and ∃X ∈ AH such that X � Y and γ(X) =
Di = (Ai, Ci, σi). Synthesis of the flat representa-
tion (F , C′, σ′) of the hierarchical diagram H in context
of Y is the flat representation (F∗, C∗, σ∗) (denoted as
SN(H,F , Y)) such that:

1. F∗ = F −Ai ∪ {X},

2. C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},

3. σ∗ = σ|AA∩F∗ .

Page D′ (presented in Fig. 8) is a flat representation
of the hierarchical system H defined by pages D1 and
D2 (presented in Fig. 3 and 4) with the simple substi-
tution mechanism. Flat representation generated by the
AN(H,D1, B) analysis operation (Fig. 8) is generated by
the following algorithm.

1. Remove the agent B from the page D1 with all its
connections.

2. Move the contents of the page D2 onto the page D1.

8 M. Szpyrka, et. al

r_in

r_out

r_in

r_out

r_in

r_out

r_in

r_out

Reader1

Reader2

Reader3

Reader4

Writer1

Writer2

w_in

w_out

w_in

w_out
r
_
i
n

r
_
o
u
t

w
_
i
n

w
_
o
u
t

Library

Fig. 9. Application of the extended substitution.

e

C

g

h

D E

F

i

j

k

l

m n

f

d

A

b

a

c

Fig. 8. Application of the simple substitution.

3. Add connections – If after removing of the agent B,
from the page D1, it has been removed a connection
between ports B.a and X1

i .p, then we add a connec-
tion between ports X1

i .p and π(B.a) with the same
direction as the removed one.

Page pSystem (presented in Fig. 2) as a primary
page is a flat representation of the hierarchical graph
presented in Fig. 7 with pages pReaders and pWriters
(presented appropriately in Fig. 5 and Fig. 6) with
the extended substitution mechanism. Flat representa-
tion generated by the composition of the analysis op-
erations AN(H,AN(H, pSystem,Readers),Writers) is
presented in Fig. 9. This operation is supported by nearly
the same algorithm as above with one change (in the third
step). If after removing of a hierarchical agent Xi

j , it has
been removed a connection between portsXi

j .p andXi
n.q,

then we add similar connections between port Xi
n.q and

all ports from the set π(Xi
j .p).

In the next section we consider a flat representation
without hierarchical agents, such a representation is max-
imal from the analysis point of view.

Definition 11. A flat representation (F , C′, σ′) is called
the maximal flat representation iff

∀X ∈ A ∃Y ∈ F : X � Y. (14)

5. Code layer
The code layer is used to describe the behaviour of indi-
vidual agents in Alvis models. The layer uses Alvis be-
haviour description statements and some elements of the
Haskell functional programming language. In spite of the

Formal introduction to Alvis modelling language 9

fact that Alvis has its origin in CCS (Aceto et al., 2007),
(Fencott, 1995), (Milner, 1989) and XCCS (Balicki and
Szpyrka, 2009). (Matyasik, 2009) process algebras, to
make the language more convenient from the practical
(engineering) point of view, algebraic equations and oper-
ators have been replaced with statements typical for high
level programming languages. The code layer is used to
define:

• data types used in the model under consideration,

• functions for data manipulation

• behaviour of individual agents.

Both Haskell and Alvis are case sensitive languages.
Haskell requires type names to start with an upper-case
letter, and variable names to start with a lower-case letter.
We follow Haskell footsteps. Moreover, Alvis requires
agent names to start with an upper-case letter, and port
names to start with a lower-case letter.

-- Preamble:
-- types
-- constants
-- functions
-- environment specification

-- Implementation:
agent AgentName;
-- declaration of parameters
-- agent body

Listing 1. Structure of the code layer

The general structure of the code layer is presented
in Listing 1. The preamble contains definitions of types,
constants and functions used to manipulate data in a
model. This part of the preamble is encoded in pure
Haskell. Moreover, the preamble may contain specifica-
tion of some environment activities that may be useful e.g.
for an Alvis model simulation.

The implementation contains definitions of the
agents’ behaviour. This part is encoded using native Alvis
statements, but the preamble contents is used to represent
parameters values and to manipulate them. It contains at
least one agent block as shown in Listing 1. It is possi-
ble to share one definition among a few agents. In such
a case, a few agents’ names are placed after the keyword
agent separated by commas. If necessary, an agent’s name
is followed by its priority put inside round brackets. Prior-
ities range from 0 to 9. Zero is the higher system priority.

Alvis uses the Haskell’s type system. Types in
Haskell are strong, static and can be automatically in-
ferred. The strong property means that the type system
guarantees that a program cannot contain errors coming
from using improper data types, such as using a string as

an integer. Moreover, Haskell does not automatically co-
erce values from one type to another. The static property
means that the compiler knows the type of every value and
expression at compile time, before any code is executed.
Haskell’s combination of strong and static typing makes
it impossible for type errors to occur at runtime. Selected
basic Haskell types recommended to be used in Alvis are
as follows:

• Char – Unicode characters.

• Bool – Values in Boolean logic (True and False).

• Int – Fixed-width integer values – The exact range
of values represented as Int depends on the system’s
longest native integer.

• Double – Float-point numbers typically 64 bits wide
and uses the system’s native floating-point represen-
tation.

The most common composite data types in Haskell
(and Alvis) are lists and tuples. A list is a sequence of ele-
ments of the same type, with the elements being enclosed
in square brackets and separated by commas, while a tu-
ple is a sequence of elements of possibly different types,
with the elements being enclosed in parentheses and sep-
arated by commas. Haskell represents a text string as a
list of Char values. There is also a possibility to define a
synonym for an existing type or to define new composite
data types. For more details see for example (O’Sullivan
et al., 2008).

Parameters are defined using the Haskell syntax.
Each parameter is placed in a separate line. The line starts
with a parameter name, then the :: symbol is placed fol-
lowed by the parameter type. The type must be followed
by the = symbol and the parameter initial value. It should
be underlined that the = symbol in Haskell code repre-
sents meaning – the name on the left is defined to be the
expression on the right. This meaning of = is valid in the
preamble. In the implementation part, the = symbol stands
for the assignment operator.

The subset of Alvis statements used with the α0 sys-
tem layer is shown in Table 1. The table does not contain
statements that use time explicitly e.g. delay statement.
A more detail survey of Alvis statements can be found
in (Szpyrka et al., 2011).

Let us focus on a few selected statements that may
need some explanation. The assignment operator is also
used as a part of the exec statement. The exec statement
is the default one. Therefore, the exec keyword can be
omitted. Thus, to assign a literal value 7 to an integer
parameter x one of the following statements can be used:

exec x = 7;
x = 7;

10 M. Szpyrka, et. al

Table 1. Alvis statements used with the α0 system layer
Statement Description
alt (g) {...} Defines a branch inside the select statement. The guard is optional.
exec x = expression Evaluates the expression and assigns the result to the parameter; the exec keyword can

be omitted.
exit If an active agent performs the statement, it is terminated. If a passive agent performs

the statement, its current procedure is terminated.
if (g) {...} else {...} If the guard is satisfied the if part is executed, otherwise the else part is executed.
if (g1) {...} Extended version of the conditional statement.
elseif (g2) {...}

elseif (g3) {...}

...

else {...}

in p Collects a signal (without value) via the port p.
in p x Collects a value via the port p and assigns it to the parameter x.
jump label Transfers the control to the line of code identified with the label.
loop (g) {...} Repeats execution of the contents while the guard if satisfied, the guard is checked

everytime before entering the loop contents. – It is similar to the while loop in most
languages.

loop {...} Infinite loop.
null Empty statement.
out p Sends a signal (without value) via the port p.
out p x Sends the value of the parameter x via the port p; a literal value can be used instead

of a parameter.
proc (g) p {...} Defines the procedure for the port p of a passive agent. The guard is optional.
select { Selects one of the alternative choices. Guards g1, g2, . . . decide which alternatives
alt (g1) {...} can be chosen after entering the select statement.
alt (g2) {...}

alt (g3) {...}

...

}

start A Starts the agent A if it is in the Init state, otherwise do nothing.

The assignment operator can also be followed by an
expression. Alvis uses Haskell to define and manipulate
data types, thus, such an expression must be encoded in
Haskell and may contain Haskell functions.

An agent can communicate with its outside world us-
ing ports. Each port can be used both as an input or an
output one. The current role of a port is determined by
two factors:

1. Connections to the port in the corresponding com-
munication diagram (i.e. one-way or two-way con-
nections);

2. Statements used in the code layer.

Moreover, any communication through a port can be
a pure communication (a signal without a special value
is transmitted) or a single value (probably of a composed
type) can be sent/collected. A communication between an
active and a passive agent or between two passive agents
is similar to a procedure call. On the other hand, a com-
munication between two active agents synchronises them.

Alvis uses two statements for the communication.
The in statement for collecting data and out for sending.
Each of them takes a port name as its first argument and
optionally a parameter name as the second. Parameters
are not used for the pure communication. The in state-
ment assigns the collected value to its parameter, while
the out statement sends the value of its parameter. Instead
of a parameter, a constant can be used in the out statement.

Let focus on ports that are connected with at least one
another port. A port X.p ∈ P can be used as an argument
of the in statement iff there exists a port X ′.p′ ∈ P , such
that (X ′.p′, X.p) ∈ C. Similarly, a port X.p ∈ P can be
used as an argument of the out statement iff there exists a
port X ′.p′ ∈ P , such that (X.p,X ′.p′) ∈ C.

On the other hand, Alvis models can use so-called
border ports i.e. ports without any connections that are
treated as communication channels with the considered
embedded system environment. Properties of border ports
are specified in the code layer preamble with the use of the
environment statement. Each border port used as an input

Formal introduction to Alvis modelling language 11

one is described with at least one in clause. Similarly, each
border port used as an output one is described with at least
one out clause. Using in and out clauses, a designer can
specify both values sent through the corresponding port
and time points (in milliseconds), when the port can be
used. Each clause inside the environment statement con-
tains the following pieces of information:

• in or out key word,

• the border port name,

• a type name or a list of permissible values to be sent
through the port,

• a list of time points, when the port is accessible.

If a border port is used both as an input and output
one, then it must be described both with the in and out
clauses. If different kinds of signals can be sent through
a border port, then more than one in or out clause can be
used. If a border port is used for a parameterless commu-
nication, then the first list is empty. Similarly, if a border
port is always accessible, then the second list is empty.
Lists are defined using the Haskell language. In particular,
it is possible to use infinite lists (O’Sullivan et al., 2008).

Border ports names must be unique in a model. It
is possible to use a border port name more than once, but
it means that more than one agent can send (or collect)
signals through the same border port.

in p1 [0,1] [];
in p2 Bool [];
out p3 [0,1] [];
out p3 Bool [];
out p4 [] [];

Listing 2. Border ports specification – examples

Let us consider the border ports presented in List-
ing 2. At any time one of the values 0 or 1 (at random)
can be collected through the port p1. Similarly, a Boolean
value can be collected through the port p2. At any time
one of the values 0 or 1 or a Boolean value can be sent
through the port p3, and at any time a parameterless sig-
nal can be sent through the port p4.

Some Alvis statements contain so-called guards.
Guards are logical expressions, written in Haskell, placed
inside round brackets. They are used for example, as con-
ditions for the loop statement.

Alvis provides loop and jump statements to define
agents that repeats a sequence of statements. In the sim-
plest form, the loop statement is used to define an infi-
nite loop. If the loop keyword is followed by a guard,
the loop behaves like the while loop in most programming
languages. The guard of the loop statement is checked ev-
ery time before entering the loop contents (put inside curly

brackets). The jump statement uses labels that are identi-
fiers followed by a colon. The statement is composed of
the jump key word and a label name (without a colon).
The jump statement is the key statement for translating al-
gorithms from CCS to Alvis.

In order to allow for the description of agents whose
behaviour may follow different alternative paths, Alvis of-
fers the select statement. The statement may contain a
series of alt clauses called branches. Each branch may
be guarded. These guards divide branches into open and
closed ones. A branch is called open, if it does not have a
guard attached or its guard evaluates to True. Otherwise,
a branch is called closed. To avoid indeterminism, if more
than one branch is open the first of them is chosen to be
executed. If all branches are closed, the corresponding
agent is postponed until at least one branch is open.

Alvis provides also statements directly related to
time e.g., loop every or delay statements. However, it is
out of the scope of the paper to consider statements and
LTS graphs directly related to time.

Passive agents are used to store data shared among
agents and to avoid the simultaneous use of such data by
two or more agents. They provide a set of procedures that
can be called by other agents. Each procedure has its own
port attached and a communication with a passive agent
via that port is treated as the corresponding procedure call.
Depending on the communication direction, such a proce-
dure may be used to send or collect some data from the
passive agent. Each procedure is defined with the proc
statement that is followed by a guard (optionally) and the
corresponding port name. The procedure is accessible for
other agents only if the guard evaluates to True.

6. Models
Formally, we define an Alvis model as a triple with a hi-
erarchical communication diagram as shown in Defini-
tion 12.

Definition 12. An Alvis model is a triple A = (H,B,ϕ),
where:

• H = (D, γ) is a hierarchical communication dia-
gram,

• B is a syntactically correct code layer,

• ϕ is a system layer.

Moreover, each non-hierarchical agentX belonging to the
diagram H must be defined in the code layer, and each
agent defined in the code layer must belong to the dia-
gram.

For an Alvis model A = (H,B,ϕ), its equivalent
non-hierarchical model is a triple A = (D,B,ϕ), where
D is the maximal flat representation of H .

12 M. Szpyrka, et. al

To describe the current state of an agent we need a tu-
ple with four pieces of information:

• agent mode (am);

• program counter (pc);

• context information list (ci);

• parameters values tuple (pv).

Let us focus on passive agents firstly. A passive agent
is always in one of two modes: waiting or taken. The
former one means that the agent is inactive and waits for
another agent to call one of its accessible procedures. In
such a situation the program counter is equal to zero and
the context information list contains names of accessible
procedures. In any state, the parameters values list con-
tains the current values of the agent parameters. The taken
mode means that one of the passive agent procedures has
been called and the agent is executing it. In such a case, ci
contains the name of the called procedure (i.e. the name of
the port used for current communication). The pc points
out the index of the next statement to be executed or the
current statement if the corresponding active agent is wait-
ing.

An active agent can be in one of the following modes:
finished, init, ready, running, waiting. (The ready mode
is not used with the α0 system layer.) An Alvis model
contains a fixed number of agents. In other words, there is
no possibility to create or destroy agents dynamically. If
an active agent starts in the init mode, it is inactive until
another agent activates it with the start statement. Active
agents that are initially activated are distinguished in the
communication diagram – their names are underlined. If
an agent is in the init mode, its pc is equal to zero and ci
is empty.

The finished mode means that an agent has finished
its work or it has been terminated using the exit statement.
The statement is argumentless and an agent can terminate
its work itself only. If an agent is in the finished mode, its
pc is equal to zero and ci is empty.

The waiting mode means that an active agent is wait-
ing either for a synchronous communication with another
active agent, or for a currently inaccessible procedure of a
passive agent. In such a case, the pc points out the index of
the current statement and ci contains names of the agent
ports that can be used for the desired communication.

The last mode running used here means that an agent
is performing one of its statements. If it is a synchronous
communication with another active agent or a procedure
call, then the used port’s name and the other agent’s name
(for procedures) are placed into ci. The pc points out the
index of the current (e.g. for procedure call) or next agent
statement. All possible transitions among modes of an
active agent are shown in Fig. 10.

The formal definition of an agent state is as follows.

initfinished

running waiting

Fig. 10. Possible transitions among modes (without the ready
mode).

Definition 13. A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pv(X)), (15)

where am(X), pc(X), ci(X) and pv(X) denote mode,
program counter, context information list and parameters
values of the agent X respectively.

It is very important to explain the way Alvis program
counters work.

• We say that pc(X) points out an exec (exit, jump,
null, start) statement iff the next statement to be exe-
cuted is an exec (exit, jump, null, start) statement.

• We say that pc(X) points out an in or out statement
iff the next statement to be executed is an in or out
statement or the currently executing statement in in
or out (e.g. an agent is waiting for a communication).

• We say that pc(X) points out an if statement iff the
next statement to be executed is the evaluating of the
guard and entering one of the if statement alterna-
tives.

• We say that pc(X) points out a loop statement iff
the next statement to be executed is the evaluating
of the guard (if any) and possibly entering the loop
statement.

• We say that pc(X) points out a select statement iff
the next statement to be executed is entering the se-
lect statement and possibly one of its branches.

Definition 14. A state of a model A = (D,B,ϕ), where
D = (A, C, σ) and A = {X1, . . . , Xn} is a tuple

S = (S(X1), . . . , S(Xn)). (16)

7. Transitions
The transitions semantic given below is valid only for
models with α0 system layer i.e. triples A = (H,B, α0)
(or equivalently A = (D,B, α0)). The set of all possible
transitions for such models without time defined explicitly
is given in Table 2.

Definition 15. The initial state of a model A = (D,B,
α0) is a tuple S0 as given in (16), where:

Formal introduction to Alvis modelling language 13

• am(X) = running for any active agent X such that
σ(X) = True;

• am(X) = init for any active agent X such that
σ(X) = False;

• am(X) = waiting for any passive agent X;

• pc(X) = 1 for any active agent X in the running
mode and pc(X) = 0 for other agents.

• ci(X) = [] for any active agent X;

• For any passive agent X , ci(X) contains names of
all accessible ports of X (i.e. names of all accessible
procedures) together with the direction of parameters
transfer, e.g. in(a), out(b), etc.

• For any agentX , pv(X) containsX parameters with
their initial values.

To define formally results of transitions execution,
we have to provide some mechanisms for code analysis.
Let us define the following symbols.

• B(X) – the X agent code definition (the agent
block);

• card(B(X)) – the number of steps in B(X);

• Bi(X) for i = 1, . . . , card(B(X)) – the name of the
i-th step, Bi(X) ∈ {exec, exit , if , in, jump, loop,
null , out , select , start}.

• N (t) – the name of the transition t (possible values
the same as for steps).

• If necessary am, pc, ci, pv will be indicated by in-
dexes S, S′ etc. to point out the state they refer to.

The set of all transitions available for a particular
model will be denoted by T . For example, the tstart is
available for a model A = (D,B, α0) iif ∃X ∈ A,∃i ∈
{1, . . . , card(B(X))} : Bi(X) = start .

Table 2. Set of transitions
Symbol Description
tstart starts an inactive agent
texit terminates an agent or a procedure
tin performs communication (input side)
tout performs communication (output side)
tloop enters a loop
tjump jumps to a label
tif enters an if statement
tselect enters a select statement
texec performs an evaluation and assignment
tnull performs an empty statement

Let us focus on the step idea. Statements such as
exec, exit , in , jump, null , out and start are single-
step statements. On the other hand, if , loop and select
are multi-step statements. We use recursion to count the
number of steps for multi-step statements. For each of
these statements, the first step enters the statement inte-
rior. Then, we count steps of statements put inside curly
brackets.

agent A {
i :: Int = 0;
loop { -- 1
select { -- 2
alt (i == 0) { in p; i = 1;} -- 3, 4
alt (i == 1) { in q; i = 0;} -- 5, 6

}
if(i == 1) { out p;} -- 7, 8
else { null; } -- 9

}
}

Listing 3. Steps counting in Alvis code

Let us consider the piece of code shown in List-
ing 3. It contains 9 steps. The steps number are put inside
comments. For example, the step 7 denotes entering the
if statement, while the step 8 denotes the out statement.
For passive agents, only statements inside procedures (i.e.
inside curly brackets) are taken into consideration while
counting steps.

To simplify the formal description of transitions, we
will provide nextpc function that determine the number
of the next step (the next program counter for an agent).
For the purposes of this discussion block means a piece
of a code inside curly brackets and last block step means
that the step is the last one in the block and is followed by
the closing curly bracket. Depending on the considered
statement we will consider: if blocks (any of the blocks
after if, elseif or else clauses), loop blocks, branch blocks
(alt clauses), procedure blocks and agent blocks (a main
agent’s block). It is possible that there is no the last main
block step e.g. if an agent behaviour is defined with an
infinite loop (see Listing 3).

The nextpc function takes an agent X state as an
argument and returns an integer in the range of 0 to
card(B(X)). The function satisfies the following require-
ments.

1. If the current step is not the last block step then:

• if the step is a jump step then nextpc(S(X)) re-
turns the number of the first step after the jump
statement label.

• otherwise nextpc(S(X)) = pcS(X) + 1.

2. If the current step is the last main block step then
nextpc(S(X)) = 0.

14 M. Szpyrka, et. al

3. If the current step is a loop step (i.e. the step that
denotes entering a loop) then:

• if the guard is satisfied or for an infinite loop
nextpc(S(X)) = pcS(X) + 1;

• if the guard is not satisfied then nextpc(S(X))
returns the number of the first step after the loop
if it exists or 0 otherwise;

4. If the current step is the last loop block step then
nextpc(S(X)) is equal to the number of the loop
step.

5. If the current step is an if step then nextpc(S(X))
returns the number of the first step inside the chosen
if block.

6. If the current step is the last if block step then
nextpc(S(X)) returns the number of the first step af-
ter the if statement if it exists or 0 otherwise;

7. If the current step is a select step then nextpc(S(X))
returns the number of the first step inside the chosen
branch block.

8. If the current step is the last branch step then
nextpc(S(X)) returns the number of the first step af-
ter the select statement if it exists or 0 otherwise;

9. If the current step is the last procedure step then
nextpc(S(X)) = 0.

Moreover, we will use the firstpc function that for a
passive agent port returns the number of the first step in
the corresponding procedure.

We will consider behaviour of Alvis models at the
level of detail of single steps. Each of transitions pre-
sented in Table 2 realises a single step. Each step is re-
alised in the context of one active agent. Also procedures
of passive agents are realised in context of active agents
that called them. Let us consider active agents firstly.

Definition 16. Assume A = (D,B, α0) is an Alvis
model with the current state S = (S(X1), . . . , S(Xn))
and Xi ∈ AA. A transition t ∈ T (see Table 2) is enable
in the state S with respect to Xi iff the following require-
ments hold:

1. am(Xi) = running ,

2. Bpc(Xi)(Xi) = N (t),

3. ci(Xi) = [].
The clause with respect to will be omitted if the agent

name is obvious or unimportant.
To simplify the description of transitions we will use

the f/r abbreviation that means finished if the pc counter
is equal to 0 in the considered state and running other-
wise.

If the transition tstart is enable in the state S with
respect to the agent Xi and the agent Xj ∈ AA is the ar-
gument of tstart (Only an active agent can be the argument
of the start statement.) then the state S′ that is the result
of executing tstart in S (denoted as S − tstart → S′) is
defined as follows:

• S′(Xi) = (f/r,nextpc(S(Xi)), [], pvS(Xi))

• If amS(Xj) = init then
S′(Xj) = (running , 1, [], pvS(Xj))

• If amS(Xj) 6= init then S′(Xj) = S(Xj).

• States of other agents remain unchanged.

If the transition texit is enable in the state S with re-
spect to the agentXi then the state S′ such that S−texit →
S′) is defined as follows:

• S′(Xi) = (finished , 0, [], pvS(X)),

• States of other agents remain unchanged.

If a transition t ∈ {tjump , tloop , tnull} is enable in the
state S with respect to the agent Xi then the state S′ such
that S − t→ S′ is defined as follows:

• S′(Xi) = (f/r,nextpc(S(Xi)), [], pvS(Xi)).

• States of other agents remain unchanged.

The texec transition changes the state in similar way
but the value of one of the Xi parameters is updated.
Moreover, the tif transition also changes the state in sim-
ilar way but the agent Xi mode is always running in the
S′ state.

If the transition tin is enable in the state S with re-
spect to the agentXi (assume portXi.p is the correspond-
ing in statement argument and no value is sent through the
port) then the state S′ such that S − tin → S′) is defined
as follows:

• If Xi.p is a border port then
S′(Xi) = (f/r,nextpc(S(Xi)), [], pvS(Xi)).

• IfXi.p is not a border port and there existsXj ∈ AA

such that (Xi.p,Xj .q) ∈ C, amS(Xj) = waiting
and ciS(Xj) = [out(q)] then
S′(Xi) = (f/r,nextpc(S(Xi)), [], pvS(Xi)),
S′(Xj) = (f/r,nextpc(S(Xj)), [], pvS(Xj)).

• IfXi.p is not a border port and there existsXk ∈ AP

such that (Xi.p,Xk.r) ∈ C, amS(Xk) = waiting
and out(r) ∈ ciS(Xk) then
S′(Xi) = (running , pcS(Xi), [in(p), Xj], pvS(Xi)),
S′(Xk) = (taken,firstpc(Xk.r), [out(r)], pvS(Xk)).

Formal introduction to Alvis modelling language 15

• If Xi.p is not a border port, and there does not exists
Xj ∈ AA such that (Xi.p,Xj .q) ∈ C, amS(Xj) =
waiting and ciS(Xj) = [out(q)], and there does
not exists Xk ∈ AP such that (Xi.p,Xk.r) ∈ C,
amS(Xk) = waiting and out(r) ∈ ciS(Xk) then
S′(Xi) = (waiting , pcS(Xi), [in(p)], pvS(Xi)).

• States of other agents remain unchanged.

The transition tin changes the state in similar way
also for a value passing communication. The only differ-
ence is that as a result of communication with an active
agent or through a border port (the first and second case in
the above description), the value of one of the Xi param-
eters is updated.

The tout transition works in very similar way, tin and
tout differ only in the direction of information sending.
For example, in the above second case instead of the con-
dition ciS(Xj) = [out(q)], we use ciS(Xj) = [in(q)].

If the transition tselect is enable in the state S with
respect to the agent Xi then the state S′ such that S −
tselect → S′) is defined as follows:

• If at least one branch of the statement is open then
S′(Xi) = (running , nextpc(S(Xi)), [], pvS(X)).

• If all branches are closed then S′(Xi) = (waiting ,
pcS(Xi), c, pvS(X)), where list c contains names of
all ports used in the select statement guards together
with the directions of parameters transfer. One port
may be placed in c twice if both directions are possi-
ble.

• States of other agents remain unchanged.

Let us focus on passive agents now. The tselect tran-
sition is not allowed in procedures.

Steps of passive agents are always considered in the
context of an active one. Thus, to define enable transitions
for passive agents, it is necessary to consider behaviour of
a pair of agents.

Definition 17. Assume A = (D,B, α0) is an Alvis mo-
del with the current state S = (S(X1), . . . , S(Xn)) and
Xi ∈ AP , Xj ∈ AA are agents such that: (Xi.p,Xj .q) ∈
C, amS(Xj) = running , ciS(Xj) = [in(q), Xi],
amS(Xi) = taken and ciS(Xi) = [out(p)]. A transi-
tion t ∈ T − {tselect} (see Table 2) is enable in the state
S with respect to Xi iff Bpc(Xi)(Xi) = N (t).

A similar definition can be given for agents Xi ∈
AP , Xj ∈ AA such that (Xj .q,Xi.p) ∈ C.

Assume Xi ∈ AP , Xj ∈ AA are agents that fulfil
requirements from Definition 17.

If a transition t ∈ {tif , tloop} is enable in the state
S with respect to the agent Xi then the state S′ such that
S − t→ S′ is defined as follows:

• S′(Xi) = (taken,nextpc(S(Xi)), ciS(Xi), pvS(Xi)).

• States of other agents remain unchanged.

Transitions tnull and tjump work in the same way if
the current step is not the last procedure step. Otherwise
the state S′ such that S − t→ S′ is defined as follows:

• S′(Xi) = (waiting , 0, c, pvS(Xi)), where c con-
tains names of all accessible ports (procedures) to-
gether with the directions of parameters transfer.

• S′(Xj) = (f/r,nextpc(S(Xj)), [], pvS(Xj)).

• States of other agents remain unchanged.

The texec transition changes the state in similar way
like tnull but the value of one of the Xi parameters is up-
dated. The tstart transition changes the state ofXi andXj

in same way as tnull but the state of the active agent Xk

that is the argument of the start statement is also changed
in same manner as previously described for tstart with re-
spect to an active agent.

If the texit transition is enable in the state S with re-
spect to the agentXi then the state S′ such that S−texit →
S′) is defined as follows:

• S′(Xi) = (waiting , 0, c, pvS(Xi)), where c con-
tains names of all accessible ports (procedures) to-
gether with the directions of parameters transfer.

• S′(Xj) = (f/r,nextpc(S(Xj)), [], pvS(Xj)).

• States of other agents remain unchanged.

There are three cases we have to consider, while dis-
cussing transitions tin and tout . The first one corresponds
to a communication with an active agent that called a pro-
cedure, the second case corresponds to a communication
through a border port and the third one to calling a proce-
dure of another passive agent.

Suppose that Xi realises an input procedure. If the
tin transition is enable in the state S with respect to the
agentXi, the portXi.p is the argument of the in statement
(a communication with the active agent Xj), no value is
sent through the port and the current step is not the last
procedure step then the state S′ such that S − tin → S′ is
defined as follows:

• S′(Xi) = (taken,nextpc(S(Xi)), ciS(Xi), pvS(Xi)).

• States of other agents remain unchanged.

The tin transition works in the same way also for
a communication through a border port Xi.p

′. The transi-
tion tin changes the state in similar way also for a value
passing communication. The only difference is that as a
result of a communication with an active agent or through
a border port (the first and the second case), the value of
one of the Xi parameters is updated.

If the tin transition is enable in the state S with re-
spect to the agentXi, the portXi.p

′ is the argument of the

16 M. Szpyrka, et. al

in statement and Xi.p
′ is not a border port then the state

S′ such that S − tin → S′ is defined as follows:

• If there existsXk ∈ AP such that (Xi.p
′, Xk.r) ∈ C,

amS(Xk) = waiting and out(r) ∈ ciS(Xk) then
S′(Xi) = (taken, pcS(Xi), [out(p), in(p

′)],
pvS(Xj)).

S′(Xj) = (running , pcS(Xi), [in(p), Xj , Xk],
pvS(Xi)),

S′(Xk) = (taken,firstpc(Xk.r), [out(r)], pvS(Xj)).

• If there does not exists Xk ∈ AP such that
(Xi.p,Xk.r) ∈ C, amS(Xk) = waiting and
out(r) ∈ ciS(Xk) then
S′(Xi) = (taken, pcS(Xi), [in(p), out(p

′)], pvS(Xi)).

S′(Xj) = (waiting , pcS(Xi), [in(p), Xj], pvS(Xi)).

• States of other agents remain unchanged.

In such a case, even if the current step in the last pro-
cedure block step then it is not the last procedure Xi.p
step. The last step of the Xk.r procedure is now treated as
the last step of the Xi.p procedure. Of course, if the Xk.r
procedure calls another one, we follow the relationships.

The tout transition works in very similar way, tin and
tout differ only in the direction of information sending.

In connection with the above description of transi-
tions it worth to emphasize the difference between two
types of communication in Alvis. A communication be-
tween two active agents can be initialised by any of them.
The agent that initialises it, performs the out statement to
provide some information and waits for the second agent
to take it, or performs the in statement to express its readi-
ness to collect some information and waits until the sec-
ond agent provides it.

On the other hand, a communication between an ac-
tive and a passive agent can be initialised only by the for-
mer. Any procedure in Alvis uses only one either input or
output parameter (or signal in case of parameterless com-
munication). In case of an input procedure, an active agent
calls the procedure using the out statement (and provides
the parameter, if any, at the same time). If the correspond-
ing passive agent is in the waiting mode and the procedure
is accessible, the agent starts it in the active agent context.
The passive agent collects the signal/parameter using the
in statement, but it is not necessary to put the statement
as the first procedure step. Similarly, in case of an output
procedure, an active agent calls the procedure using the in
statement. The passive agent returns the result using the
out statement, but it is not necessary to put the statement
as the last procedure step.

For simplicity, we say that an agentXi ∈ A is enable
in a state S iff there exists a transition t ∈ T such that t is
enable in the state S with respect to Xi.

IfXi ∈ AA and tin or tout is enable in a state S with
respect toXi then we say thatXi try to communicate with

another agent in the state S. For a passive agentXj ∈ AP

we say that Xj try to communicate with another agent in
a state S only if tin or tout is enable in S with respect
to Xj and the port that is argument of the corresponding
statement and the current procedure port differ.

We say that there is a conflict between agents
Xi, Xj ∈ A in a state S iff both agents try to communi-
cate with the same agent. In such case, the step to execute
is chosen indeterministically.

For the above considerations we assumed implicitly
that all agents have the same priority what is not necessary.
If we consider agents with different priorities, a conflict
between agents Xi, Xj ∈ A exists only if both agents try
to communicate with the same agent and they have the
same priority. If both agents try to communicate with the
same agent but they have different priorities, we say that
there is a potential conflict between them.

Priorities affect also enabling of the tin and tout tran-
sitions. To be enable with respect to an agent Xi a tran-
sition must not only satisfy the requirements of Defini-
tion 16 or 17 but also it cannot be in a potential conflict
between the agent Xi and an agent with a higher priority.

8. LTS graphs
Assume A = (D,B, α0) is an Alvis model. For a pair of
states S, S′ we say that S′ is directly reachable from S
iff there exists t ∈ T such that S − t → S′. We say that
S′ is reachable from S iff there exist a sequence of states
S1, . . . , Sk+1 and a sequence of transitions t1, . . . , tk ∈
T such that S = S1 − t1 → S2 − t2 → . . . − tk →
Sk+1 = S′. The set of all states that are reachable from
the initial state S0 is denoted byR(S0).

States of an Alvis model and transitions among them
are represented using a labelled transition system (LST
graph for short). An LTS graph is directed graph LTS =
(V,E, L), such that V = R(S0), L = T , and E =
{(S, t, S′) : S−t→ S′∧S, S′ ∈ R(S0)}. In other words,
an LTS graph presents all reachable states and transitions
among them in the form of the directed graph.

To illustrate the idea of LTS graph let us consider two
simple examples of Alvis models. The first model shown
in Fig. 11 represents two active agents that communicate
one with another. The X_1 agent is a sender and X_2 is a
receiver. The LST graph for this model is shown in Fig 12.
The graph is another approach to explain the rules of the
Alvis communication between active agents.

The second model is presented in Fig. 13. It deals
with a communication between an active and a passive or
two passive agents. The states in the LTS graph illustrate
the way agents states change while such a communication.
The most interesting parts of these states are modes and
context information lists.

The graphical form of LTS graphs presentation is
very useful from users point of view. An LTS graph gen-

Formal introduction to Alvis modelling language 17

agent X_1 {
loop { -- 1

out p; } -- 2
}

agent X_2 {
loop { -- 1

in q; } -- 2
}

Fig. 11. Example 1.

Fig. 12. Example 1 – LTS graph.

erated automatically for a model is stored in a textual
file. For verification purposes such graphs are transformed
into the Binary Coded Graphs (BCG) format. Finally, its
properties are verified with the CADP toolbox (Garavel
et al., 2007). CADP offers a wide set of functionalities,
ranging from step-by-step simulation to massively paral-
lel model-checking.

9. Summary
A description of Alvis, a formal language for modelling of
concurrent (especially embedded) systems has been pre-
sented in the paper. With the α0 system layer Alvis pro-
vides an alternative approach to modelling of such sys-
tems and may be more interesting, from the engineering
point of view, than formal languages like Petri nets, time
automata or process algebras. The main differences be-
tween Alvis and formal methods, especially process alge-

agent X_1 {
loop { -- 1
out p; } -- 2

}

agent X_2 {
proc q1 { in q1; -- 1

out q2 } -- 2
}

agent X_3 {
proc r { in r; -- 1

null; } -- 2
}

Fig. 13. Example 2.

bras, are: the syntax that is more user-friendly from the
programmers point of view, and the visual modelling lan-
guage (communication diagrams) that is used to define
connections among agents. Furthermore, system layers
provides a flexible way to specify an embedded system
running environment e.g. a scheduling algorithm.

The language is still under development (especially
another predefined system layers). Moreover, a com-
puter software called Alvis Toolkit that supports mod-
elling with Alvis is also under implementation. For more
information about the current status of the project visit
http://fm.ia.agh.edu.pl.

Acknowledgment
The paper is supported by the Alvis Project funded from
2009-2010 resources for science as a research project.

References
Aceto, L., Ingófsdóttir, A., Larsen, K. and Srba, J. (2007). Re-

active Systems: Modelling, Specification and Verification,
Cambridge University Press, Cambridge, UK.

Andre, C. (2003). Semantics of SyncCharts, University of Nice-
Sophia Antipolis.

Ashenden, P. (2008). The Designer’s Guide to VHDL, Vol. 3,
third edn, Morgan Kaufmann.

18 M. Szpyrka, et. al

Fig. 14. Example 2 – LTS graph.

Balicki, K. and Szpyrka, M. (2009). Formal definition of XCCS
modelling language, Fundamenta Informaticae 93(1-3): 1–
15.

Berry, G. (2000). The Esterel v5 Language Primer Version v5
91, Centre de Mathématiques Appliquées Ecole des Mines
and INRIA.

Est (2007). Welcome to SCADE 6.0.

Fencott, C. (1995). Formal Methods for Concurrency, Interna-
tional Thomson Computer Press, Boston, MA, USA.

Garavel, H., Lang, F., Mateescu, R. and Serwe, W. (2007).
CADP 2006: A toolbox for the construction and analy-
sis of distributed processes, Computer Aided Verification
(CAV’2007), Vol. 4590 of LNCS, Springer, Berlin, Ger-
many, pp. 158–163.

ISO (1989). Information processing systems, open systems in-
terconnection LOTOS, Technical Report ISO 8807.

Matyasik, P. (2009). Design and analysis of embedded sys-
tems with XCCS process algebra, PhD thesis, AGH Uni-
versity of Science and Technology, Faculty of Electrical
Engineering, Automatics, Computer Science and Electron-
ics, Kraków, Poland.

Milner, R. (1989). Communication and Concurrency, Prentice-
Hall.

Obj (2008). OMG Systems Modeling Language (OMG SysML).

O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World
Haskell, O’Reilly Media, Sebastopol, CA, USA.

Palshikar, G. (2001). An introduction to Esterel, Embedded Sys-
tems Programming 14(11).

Szpyrka, M. and Matyasik, P. (2008). Formal modelling and
verification of concurrent systems with XCCS, Proceed-
ings of the 7th International Symposium on Parallel and
Distributed Computing (ISPDC 2008), Krakow, Poland,
pp. 454–458.

Szpyrka, M., Matyasik, P. and Mrówka, R. (2011). Alvis – mod-
elling language for concurrent systems, Studies in Compu-
tational Intelligence, Springer-Verlag. (to appear).

Marcin Szpyrka. Prof. Marcin Szpyrka holds
a position of associate professor in AGH UST in
Krakow, Poland, Department of Automatics. He
has a MSc in Mathematics and PhD and DSc (ha-
bilitation) in Computer Science. He is the author
of over 70 publications, from the domains of for-
mal methods, software engineering and knowl-
edge engineering. Among other things, he is au-
thor of 3 books on Petri nets. His fields of inter-
est also include theory of concurrency and func-

tional programming. He is currently leader of the Alvis project. He
also worked out the idea of RTCP-nets (real time coloured Petri nets) for
modelling real-time embedded systems.

Piotr Matyasik. Assistant Professor at AGH
University of Science and technology, Depart-
ment of Automatics. He has MSc in Automat-
ics and PhD in Computer Science. His interest
covers formal methods, robotics, artificial intelli-
gence and programming languages. Currently in-
volved in Alvis project. He is the author of publi-
cations on artificial intelligence, formal methods,
embedded systems and software engineering.

Rafał Mrówka. Dr. Rafał Mrówka holds a
position of assistant professor in AGH UST in
Krakow, Poland, Department of Automatics. He
has a MSc in Automatics and PhD in Computer
Science. His fields of interest include software
engineering, formal methods, robotics and pro-
gramming languages. He is currently involved in
Alvis project.

Leszek Kotulski. Prof. Leszek Kotulski holds
a position of associate professor in AGH UST
in Krakow, Poland, Department of Automatics.
He has a MSc, PhD and DSc (habilitation) in
Computer Science. He is the author of over 80
publications, from the domains of formal meth-
ods, concurrent programming and software en-
gineering His fields of special interest include
distributed graph transformations and agents sys-
tem. He is currently leader of the GRADIS

project.

Formal introduction to Alvis modelling language 19

Krzysztof Balicki. Krzystof Balicki is em-
ployed in the Institute of Mathematics at Rze-
szow University. He has a MSc in Mathematics
and actually works on PhD thesis in Computer
Science. His interests focus on modelling and
analysis of concurrent systems with the use of
various formal methods e.g. Petri nets, process
algebras. He is also keen on applying mathemat-
ical techniques in the field of Computer Science.

	Introduction
	Related works
	System layer
	Communication diagrams
	Non-hierarchical diagrams
	Hierarchical communication diagrams
	Hierarchy elimination

	Code layer
	Models
	Transitions
	LTS graphs
	Summary

