
Int. J. Appl. Math. Comput. Sci., , Vol. , No. , –
DOI:

FORMAL MODELLING AND VERIFICATION OF CONCURRENT SYSTEMS
WITH ALVIS

MARCIN SZPYRKA, PIOTR MATYASIK, RAFAŁ MRÓWKA, LESZEK KOTULSKI

AGH University of Science and Technology
Department of Automatics

Al. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: mszpyrka,ptm,Rafal.Mrowka,kotulski@agh.edu.pl

The paper presents a formal description of a subset of the Alvis language designed for the modelling and formal verification
of concurrent systems. Alvis has been defined as a kind of a happy medium between formal and practical modelling lan-
guages. It combines possibilities of a formal models verification with flexibility and simplicity of practical programming
languages. Even though Alvis has its origin in process algebras, it combines flexible graphical modelling of interconnec-
tions among agents with a high level programming language used for the description of agents behaviour. Users can choose
one of a few varieties of Alvis semantics that depend on the so-called system layer. The most universal system layer α0,
described in the paper, makes Alvis similar to other formal languages like Petri nets, process algebras, time automata, etc.
Alvis with the α0 system layer seems to be valuable modelling language for concurrent systems.

Keywords: Alvis modelling language, embedded systems, formal verification

1. Introduction

The aim of the paper is to present a formal descrip-
tion of the Alvis modelling language (Szpyrka, Matyasik
and Mrówka, 2011), (Szpyrka, 2012) with the α0 sys-
tem layer. Alvis is a successor of the XCCS modelling
language (Balicki and Szpyrka, 2009), (Matyasik, 2009),
which was an extension of the CCS process algebra
(Milner, 1989), (Fencott, 1995), (Aceto et al., 2007).

An Alvis model is a system of agents that usually run
concurrently, communicate one with another, compete for
shared resources etc. Agents are divided into three groups:
active agents can be treated as processing nodes, passive
agents represent shared resources and hierarchical agents
represent submodels.

Alvis combines a hierarchical graphical modelling
with a high level programming language. A model con-
sists of three layers. The graphical layer is used to define
data and control flow among agents, where agent denotes
any distinguished part of the system under consideration
with defined identity persisting in time. The code layer is
used to describe behaviour of individual agents. Instead of
algebraic equations, Alvis uses a high level programming
language based on the Haskell syntax. Moreover, Haskell
is used to define data types for parameters and to define

functions for data manipulation. The third system layer is
the predefined one. It gathers information about all agents
in a model and their states. Choosing one of accessible
system layers entails choosing a scheduling algorithm and
hardware architecture for a model.

Alvis as well as other formal methods like process
algebras, Petri nets or time automata, can be used for
modelling concurrent systems. Similar to other formal
methods, Alvis provides a possibility of formal verifica-
tion of models. An Alvis model can be transformed into
a labelled transition system (LTS). After encoding such
a graph using the Binary Coded Graphs (BCG) format, its
properties are verified with the CADP toolbox (Garavel
et al., 2007).

The paper is organised as follows. Due to the fact that
Alvis has been worked out especially for modelling of em-
bedded and real-time systems, Section 2 contains a review
of other modelling languages used for embedded systems
development and their comparison with Alvis. The α0

system layer is described in Section 3. Section 4 presents
the main features of communication diagrams. Section 5
describes Alvis statements used in the code layer. A for-
mal definition of an Alvis model is given in Section 6.
Section 7 deals with a formal description of a model dy-
namic and Section 8 describes LTS graphs used for veri-

2 M. Szpyrka, et. al

fication purposes. A short summary is given in the final
section.

2. Related works
Real-time and embedded systems are a strictly distin-
guished type of computer systems with a set of program-
ming languages used for them in industry. Alvis is a novel
proposition for such systems with following advantages:

• a graphical modelling language used to define inter-
connections among agents;

• a high level programming language used to define
behaviour of individual agents (instead of algebraic
equations);

• a possibility of a formal model verification.

This section provides a short comparison of Alvis with
other modelling languages used in industry for the em-
bedded systems development.

E-LOTOS is an extension of the LOTOS modelling
language (Language Of Temporal Ordering Specifica-
tion) (ISO, 1989). The main intention of the E-LOTOS ex-
tension was to enable modelling of the hardware layer of
a system. Thus, in the specification, we can find such arti-
facts as interrupts, signals, and the ability to define events
in time. With such extensions, E-LOTOS significantly ex-
panded the possibility of using the algebra of processes,
which is the starting point for the specification in this lan-
guage.

It should be noted that the Alvis language has many
features in common with E-LOTOS. First of all, Alvis as
E-LOTOS is derived from process algebras. Alvis, like
E-LOTOS, was intended to allow formal modelling and
verification of distributed real-time systems. To meet the
requirements, Alvis provides a concept of time and a delay
operator. In contrast to E-LOTOS, Alvis provides graphi-
cal modelling language. Moreover, Alvis toolkit supports
a LTS graph generation, which significantly simplifies the
formal verification of models.

Esterel (Berry, 2000), (Palshikar, 2001) is a high-
level formal synchronous language created to program re-
active systems at a cycle-accurate behavioral level. The
original textual language was later complemented by the
SyncCharts (Andre, 2003) hierarchical automata graphi-
cal formalism (now called Safe State Machines or SSMs
in Esterel). Textual and graphical specifications can be
freely mixed. Esterel encompasses state sequencing, sig-
nal emission and reception, concurrency, and preemption
structures to drive the life and death of control component
behaviours in a hierarchical way.

Esterel is one of a family of synchronous languages.
It uses the broadcast as the unique communication mech-
anism. The broadcast mechanism means that a signal can-
not have any destination specified; all signals are broad-

cast and any module may listen to and read an emitted
signal. Also, signals do not have any unique identifier. In
contrast to Esterel, Alvis uses synchronous communica-
tion model similar to Ada’s hand shaking or agents com-
munication in the CCS process algebra. Agents in Alvis
may communicate one with another only if a communica-
tion channel between their ports is explicitly defined. Both
Alvis and Esterel support pure and value passing commu-
nication.

SCADE (Est, 2007) is a product developed by the
Esterel Technologies company. It is a complex tool for
developing a control software for embedded critical sys-
tems and for distributed systems. A system is described
as an input to output transformation. In every cycle inputs
are transformed to outputs according to a specification
provided by functions: linear and discrete and state ma-
chine. SCADE allows system developer to choose from
a large library of predefined components. The KCG code
generator, which is a part of the SCADE suite, produces C
code that has all the properties required for safety-critical
software. SCADE also provides tools for checking system
specification and verification of the developed model.

The Alvis approach is very different. The system in
Alvis is represented as a set of communicating tasks which
are continuously processing their instructions. Alvis also
has no code generation phase, because it is an executable
specification itself. Moreover, the system verification in
Alvis is based on an LTS graph generation instead of
specification-model consistency and statical code check-
ing. SCADE and Alvis have also different approaches
to types. The first one adopts simple static C language
types due to specific runtime requirements, while the sec-
ond one uses the Haskell type system.

System Modelling Language (SysML)(Obj, 2008)
aims to standardize a process of a system specification
and modelling. The original language specification was
developed as an open source project on behalf of the In-
ternational Council on Systems Engineering INCOS and
the Object Management Group (OMG). SysML is a gen-
eral purpose modelling language for systems engineering
applications. In particular, it adds two new types of dia-
grams: requirement and parametric diagrams. The Alvis
language has many common features with the SysML
block diagrams and activity diagrams: ports, property
blocks, communication among the blocks, hierarchical
models. Unlike SysML, Alvis combines structure dia-
grams (block diagrams) and behaviour (activity diagrams)
into a single diagram. In addition, Alvis defines formal se-
mantics for the various artifacts, which is not the case in
SysML. The concept of agent in Alvis corresponds with
the SysML block definition. The formal semantics of
Alvis allows you to create automated tools for verifica-
tion, validation and runtime of Alvis models. SysML is a
general-purpose systems modelling language, which cov-
ers most of the software engineering phases from anal-

Formal modelling and verification of concurrent systems with Alvis 3

ysis to testing and implementation. Alvis is focused on
the structural model, the behavioural aspects of the sys-
tem and formal verification of its properties. Its main area
of application are distributed and embedded real-time sys-
tems. Alvis can be used as an extension to the software
engineering process based on SysML.

Another solution used for years in industry is the
Very High Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) (Ashenden, 2008). This language
allows for a specification, development and verification of
digital circuits. The syntax of VHDL is based on the struc-
tures found in programming languages such as Pascal and
Ada. VHDL provides a hierarchical construction of mod-
els, similar to SysML and Alvis. The concept of agent
in Alvis is represented as a design entity in VHDL. The
design entity consists of an entity definition and a body
architecture. Communication with the environment takes
place through declared ports like in Alvis. The body of
a design entity contains the following blocks: value-signal
assignments, processes and components. Processes allow
designers to specify concurrent systems, whereas compo-
nents enable them to decomposite and combine multiple
modules into one system. Due to the Ada origins, VHDL
and Alvis have a similar syntax for the communication
and parallel processing. However, it should be noted that
Alvis is closely linked with its graphical model layer. The
graphical composition allows users for an easy identifi-
cation of a system hierarchy and components. The main
purpose of VHDL is a specification of digital electronic
circuits and it focuses on a system hardware. However,
Alvis integrates the hardware and the software view of a
system. In this way, Alvis allows for a comprehensive
verification and validation of modelled systems.

3. System layer
The system layer (or meta-data layer) is the predefined
one. It is necessary for a model simulation and analysis.
From users point of view the layer works in the read-only
mode. It gathers information about all agents in a model
and their states. Agents can retrieve some data from the
layer, but they cannot directly change them. The system
layer provides some functions that are useful for imple-
mentation of scheduling algorithms or for retrieving in-
formation about other agents states.

User can choose one of a few versions of the layer
but it affects the developed model semantic. The sys-
tem layer is strictly connected with the system architecture
and the chosen operating system. Alvis has been worked
out especially for embedded systems. One of the starting
points for Alvis development has been an analysis of At-
mel NGW100 single-board computer, which runs AVR32
microprocessor, and FreeRTOS real-time operating sys-
tem for embedded devices. Alvis can be used for mapping
both software and hardware aspects of an embedded sys-

tem at the same time. Thus, an Alvis model may contain
not only the application under consideration, but also se-
lected elements of its operating system and hardware that
are essential from the considered system point of view.

System layers differ in scheduling algorithms and
system architectures mainly. There are considered two ap-
proaches to the scheduling problem. System layers with
α symbol provide a predefined scheduling function that is
called after each step automatically. On the other hand,
system layers with β symbol do not provide such a func-
tion. User must define a scheduling function himself.

Both α and β symbols are usually extended with
some indicators put in the superscript or/and subscript.
An integer put in the superscript denotes the number of
processors in the system. Zero is used to denote the un-
limited number of processors. A symbol put in the sub-
script denotes the selected system architecture or/and cho-
sen scheduling algorithm.

In this paper we consider only the α0 system layer.
This layer makes Alvis an universal formal modelling lan-
guage similar to Petri nets or process algebras. The α0

system layer makes Alvis a formal modelling language for
concurrent systems. The layer is based on the following
assumptions:

• Each active agent has access to its own processor and
performs its statements as soon as possible.

• The predefined α0 scheduler function is called after
each statement automatically and makes agents run-
ning as soon as possible.

• In case of conflicts, agents priorities are taken under
consideration. If two or more agents with the same
highest priority compete for the same resources, the
system works indeterministically.

A conflict is a state when two or more active agents
try to call a procedure of the same passive agent or
two or more active agents try to communicate with
the same active agent.

In this paper, we will consider only Alvis statements
that do not use time explicitly and do not use border
ports (a communication with an embedded system envi-
ronment (Szpyrka, Kotulski and Matyasik, 2011)). This
subset of Alvis can be used for modelling concurrent sys-
tems instead of Petri nets, process algebras and similar
formal languages. The main advantage of the presented
approach is its form that seams to be significantly more
suitable for engineers than the mentioned formalisms.

4. Communication diagrams
Communication diagrams are the visual part of the Alvis
modelling language. They are used to represent the struc-
ture of the system under consideration. A communica-

4 M. Szpyrka, et. al

tion diagram is a hierarchical graph that nodes may rep-
resent both kind of agents (active or passive) and parts of
the model from the lower level. They are the only way,
in Alvis, to point out agents that communicate one with
the other. Moreover, the diagrams allow programmers to
combine sets of agents into modules that are also repre-
sented as agents (called hierarchical agents). It should be
underlined that a communication diagram is only a part
of an Alvis model. The complete model consists of three
layers (graphical, code, system).

4.1. Non-hierarchical diagrams. Alvis provides hi-
erarchical communication diagrams used to describe an
embedded system from the control and data flow point
of view. A hierarchical diagram enable designers to dis-
tribute parts of a diagram across multiple subdiagrams
called pages. Pages are combined using the so-called sub-
stitution mechanism. An agent at one level can be re-
placed by a page on the lower level, which usually gives
a more precise and detailed description of the subsys-
tem represented by the agent. Such a substituted agent
is called a hierarchical one. Replacing hierarchical agents
with corresponding subpages results in an equivalent non-
hierarchical diagram. Thus, at the beginning, we will pro-
vide a formal definition of non-hierarchical diagrams, and
next we will describe hierarchical mechanisms.

Let us focus on non-hierarchical diagrams in this
subsection. Let A denote an Alvis model (with a non-
hierarchical communication diagram). Graphical and
code layers of a model are closely related one to the other.
Each active and passive agent from a communication di-
agram is described in the corresponding code layer and
vice versa.

An agent can communicate with other agents through
ports. Each agent port must have a unique identifier as-
signed, but ports of different agents may have the same
identifier assigned. Thus, each port in a model is identi-
fied using its name and its agent name. For simplicity, we
will used the so-called dot notation – X.p denotes port p
of agent X .

Let P(X) denote the set of ports of an agent X . We
can distinguish the following subsets of the set P(X):

• Pin(X) denotes the set of input ports of agentX . An
input port is a port with at least one one-way connec-
tion leading to this port or with at least one two-way
connection.

• Pout(X) denotes the set of output ports of agent X .
An output border port is a port with at least one one-
way connection leading from this port or with at least
one two-way connection.

• Punc(X) = P(X) − (Pin(X) ∪ Pout(X)) denotes
the set of unconnected ports.

• Pproc(X) denotes the set of procedure ports of agent
X (for passive agents only) i.e. ports with defined
the proc statement (names of such ports are treated
as names of procedures).

For a set of agents W we define sets: P(W) =∑
X∈W P(X), Pin(W) =

∑
X∈W Pin(X), etc. More-

over, let P denote the set of all model ports, Pin denote
the set of all model input ports, etc.

Let N (X) denote the set of ports names of agent X ,
and N (W) =

∑
X∈W N (X). For example, if a diagram

contains only agents: X1 with port p and X2 also with
port p, then P = {X1.p,X2.p}, and N (P) = {p}.

Definition 1. A Non-hierarchical communication dia-
gram is a triple D = (A, C, σ), where:

• A = {X1, . . . , Xn} is the set of agents consisting of
two disjoint sets, AA, AP such that A = AA ∪ AP ,
containing active and passive agents respectively.

• C ⊆ P × P is the communication relation, such that

∀X ∈ A : (P(X)× P(X)) ∩ C = ∅, (1)
Pproc ∩ Pin ∩ Pout = ∅, (2)

(p, q) ∈ (P(AA)× P(AP)) ∩ C ⇒
⇒ q ∈ Pproc, (3)

(p, q) ∈ (P(AP)× P(AA)) ∩ C ⇒
⇒ p ∈ Pproc, (4)

(p, q) ∈ (P(AP)× P(AP)) ∩ C ⇒
⇒ (p ∈ Pproc ∧ q /∈ Pproc) ∨
∨ (q ∈ Pproc ∧ p /∈ Pproc). (5)

Each element belonging to C is called a connection
or a communication channel.

• σ : AA → {False,True} is the start function that
points out initially activated agents.
Let us focus on the conditions from Definition 1.

• (1) – A connection cannot be defined between two
ports of the same agent.

• (2) – Procedure ports are either input or output ones.

• (3), (4) – A connection between an active and a pas-
sive agent must be a procedure call.

• (5) – A connection between two passive agents must
be a procedure call from a non-procedure port.

The start function σ makes possible delaying activa-
tion of some agents – We can make them active later with

Formal modelling and verification of concurrent systems with Alvis 5

Fig. 1. Sender-Receiver system with buffer – communication
diagram.

the start statement. Names of agents that are initially ac-
tivated (represent running processes) are underlined in a
communication diagram.

An example of a communication diagram is shown
in Fig. 1. Active agents are drawn as rounded boxes while
passive ones as rectangles. An agent’s identifier is placed
inside the corresponding shape. The first character of the
identifier must be an upper-case letter. Other characters
(if any) must be alphabetic characters, either upper-case
or lower-case, digits, or an underscore. Alvis identifiers
are case sensitive. Moreover, the Alvis keywords cannot
be used as identifiers (Szpyrka, 2012). Ports are drawn as
circles placed at the edges of the corresponding rounded
box or rectangle. Ports names must fulfil the same re-
quirements as agents identifiers, but the first character of
a port name must be an lower-case letter. A communica-
tion channel is defined explicitly between two agents and
connects two ports. Communication channels are drawn
as lines (or broken lines). An arrowhead points out the
input port for the particular connection. Communication
channels without arrowheads represent pairs of connec-
tions with opposite directions.

4.2. Hierarchical communication diagrams. A com-
munication diagram can be treated as a module and repre-
sented by a single hierarchical agent at the higher level.
Hierarchical agents are not defined in the model code
layer. We divide ports of hierarchical agents into three
subsets based on the connections defined in the model:
Pin(X), Pout(X), and Punc(X). Ports of hierarchical
agents cannot be defined as procedure ones.

Definition 2. A page in a hierarchical communication
diagram is a triple Di = (Ai, Ci, σi), where:

0We will use two notations to denote ports in equations. A single
lower-case letter e.g. p denotes a port p of some agent. If it is necessary
to point out both a port name and agent name, the dot notation will be
used e.g. X.p.

• Ai = {Xi
1, . . . , X

i
n} is the set of agents with subsets

of active agents AiA, passive agents AiP , and hierar-
chical agents AiH , such that Ai = AiA ∪ AiP ∪ AiH ,
and AiA, AiP , AiH are pairwise disjoint.

• Ci ⊆ Pi × Pi, where Pi =
∑
X∈Ai P(X), is the

communication relation, such that:

∀X ∈ Ai : (P(X)× P(X)) ∩ Ci = ∅, (6)
Piproc ∩ Piin ∩ Piout = ∅, (7)

Piproc ∩ P(AiH) = ∅, (8)

(p, q) ∈ (P(AiA)× P(AiP)) ∩ Ci ⇒
⇒ q ∈ Piproc, (9)

(p, q) ∈ (P(AiP)× P(AiA)) ∩ Ci ⇒
⇒ p ∈ Piproc, (10)

(p, q) ∈ (P(AiP)× P(AiP)) ∩ Ci ⇒
⇒ (p ∈ Piproc ∧ q /∈ Piproc) ∨
∨ (q ∈ Piproc ∧ p /∈ Piproc), (11)

(p, q) ∈ (P(AiP)× P(AiH)) ∩ Ci ⇒
⇒ (q, p) /∈ Ci, (12)

(p, q) ∈ (P(AiH)× P(AiP)) ∩ Ci ⇒
⇒ (q, p) /∈ Ci. (13)

Each element of the relation Ci is called a connection
or a communication channel.

• σi : AiA → {False,True} is the start function that
points out initially activated agents.
Let us focus on the conditions from Definition 2.

• (6) – A connection cannot be defined between two
ports of the same agent.

• (7) – Procedure ports are either input or output ones.

• (8) – Hierarchical agents cannot have procedure
ports.

• (9), (10) – A connection between an active and a pas-
sive agent must be a procedure call.

• (11) – A connection between two passive agents must
a procedure call from a non-procedure port.

• (12), (13) – A connection between a hierarchical and
a passive agent must be a one-way connection.

The above definition treats hierarchical agents almost
like active ones. However, connections with ports of hier-
archical agents can make some substitution of pages ille-
gal, i.e. after the transformation of a hierarchical diagram
into the equivalent flat one, all connections must satisfy
the conditions (1)-(5).

6 M. Szpyrka, et. al

Fig. 2. Readers-Writers system – top level page of the communication diagram.

A page of a hierarchical communication diagram is
shown in Fig. 2. The main difference between a non-
hierarchical and hierarchical communication diagram is
that the latter may contain hierarchical agents. They are
are indicated by black triangles. A page without hierar-
chical agents is simply a non-hierarchical communication
diagram.

Let a hierarchical agent X ∈ AiH be given and let
PXjoin(Dj) denotes the set of all join ports of the page Dj

with respect to X , i.e.:

PXjoin(Dj) = {Xj
k.p ∈ P(D

j) : p ∈ N (P(X))}. (14)

In other words, PXjoin(Dj) is the set of all ports from the
pageDj that names are the same as those of the hierarchi-
cal agent X .

An attempt to assign a page Dj to a hierarchical
agent X results in the following set of hierarchical com-
munication channels:

CjX = {(Xi
k.p,X

j
m.q) : (X

i
k.p,X.q) ∈ Ci} ∪

∪ {(Xj
m.q,X

i
k.p) : (X.q,X

i
k.p) ∈ Ci} (15)

Definition 3. Let a hierarchical agent X ∈ AiH and a
page Dj = (Aj , Cj , σj) be given. Agent X and page Dj

satisfy the simple substitution requirements, iff

card(P(X)) = card(PXjoin(Dj)), (16)

PXjoin(Dj) ⊆ Pjunc, (17)

and the page D′ = (A′, C′, σ′), where

• A′ = Ai ∪ Aj − {X},

• C′ = Ci∪Cj∪CjX−{(p, q) : p ∈ P(X)∨q ∈ P(X)},

• σ′(Y) =

{
σi(Y) : Y ∈ AiA
σj(Y) : Y ∈ AjA

,

satisfies all conditions from Definition 2.
If instead of the condition (16), the following condi-

tion is satisfied:

card(P(X)) < card(PXjoin(Dj)), (18)

we say that agent X and page Dj satisfy the extended
substitution requirements.

We will consider a binding function π that maps ports
of a hierarchical agent to the join ports of the correspond-
ing page. In the case of a simple substitution, the binding
function π is a bijection. On the other hand, in the case of
an extended substitution, one port of a hierarhical agent
may have assigned more than one join port on the sub-
page.

Let us recall the definition of a labelled directed
graph.

Definition 4. A labelled directed graph is a triple G =
(V,E, L), where:

• V is the set of nodes.

• L is the set of edge labels.

• E ⊆ V × L× V is the set of edges.

Definition 5. A hierarchical communication diagram is
a pair H = (D, γ), where:

• D = {D1, . . . , Dk} is the set of pages of the hi-
erarchical communication diagram, such that sets of
agents Ai (i = 1, . . . , k) are pairwise disjoint.

• γ : AH → D, where AH =
⋃
i=1,...,kAiH , is the

substitution function, such that:

1. γ is an injection.

2. For any X ∈ AH , X and γ(X) satisfy the re-
quirements of the simple or extended substitu-
tion.

3. Labelled directed graph G = (D, E,AH)
where (Di, Xi

k, D
j) ∈ E iff γ(Xi

k) = Dj is
a tree or a forest.

The labelled directed graph defined above is called
a page hierarchy graph. Nodes of such a graph repre-
sent pages, while edges (labelled with names of hierar-
chical agents) represent the substitution function γ. Each
edge represents the page to which belongs the hierarchical
agent (used as label) and the subpage associated with the
agent.

We assume that system definition starts from a page
or a set of pages, thus the number of pages must be greater
than the number of hierarchical agents. Formally pages
from the set D − γ(AH) are called primary pages, They
are roots of trees that constitute a page hierarchy graph.

Formal modelling and verification of concurrent systems with Alvis 7

Following symbols are valid for hierarchical commu-
nication diagrams:

• AA =
⋃
i=1,...,kAiA,

• AP =
⋃
i=1,...,kAiP ,

• A = AA ∪ AP ,

• σ : AA → {False,True} and ∀i = 1, . . . , k ∀Xi
j ∈

AA : σ(Xi
j) = σi(Xi

j),

• C =
⋃
i=1,...,k Ci ∪

⋃
X∈AH∧γ(X)=Dj CjX .

Fig. 3. Page D1.

Fig. 4. Page D2.

An example of the simple substitution is shown in
Fig. 3 and 4. The page shown in Fig. 4 is assigned to
agent B. The following equalities hold.

• P(B) = {B.d,B.e,B.f}

• PBjoin(D2) = {D.d,E.e, F.f}

• N (P(B)) = {d, e, f} = N (PBjoin(D2))

Of course, the binding function binds ports with the same
names.

Fig. 5. Readers-Writers system – page Readers.

Fig. 6. Readers-Writers system – page Writers.

An example of the extended substitution is shown in
Fig. 2, 5 and 6. The page hierarchy graph for the readers-
writers model is shown in Fig. 7.

WritersReaders

System

WritersReaders

Fig. 7. Page hierarchy graph

Both substitions used in the considered model are the
extended ones. Let focus on the Readers agent. The fol-
lowing equalities hold:

• P(Readers) = {Readers.r_in,Readers.r_out}

• PReaders
join (pReaders) = {Reader1.r_in,

Reader1.r_out,Reader2.r_in,Reader2.r_out,
Reader3.r_in,Reader3.r_out,Reader4.r_in,
Reader4.r_out}

• N (P(Readers)) = {r_in, r_out} =
N (PReaders

join (pReaders))

In this case, the binding function π is defined as follows:

8 M. Szpyrka, et. al

• π(Readers.r_in) =
{Reader1.r_in, . . . , Reader4.r_in}

• π(Readers.r_out) =
{Reader1.r_out, . . . , Reader4.r_out}

Instead of local binding functions, we can consider
one global function π:

π :
⋃

X∈AH

P(X)→ 2P . (19)

The function π satisfies the following conditions:

∀X ∈ AH ∀X.p ∈ P(X) :

π(X.p) ⊆ PXjoin(γ(X)), (20)
∀X ∈ AH ∀X.p ∈ P(X) : N (π(X.p)) = {p}. (21)

If a communication diagram contains only simple
substitutions, then the function (19) takes the simplified
form:

π :
⋃

X∈AH

P(X)→ P, (22)

and the condition (20):

∀X ∈ AH ∀X.p ∈ P(X) : π(X.p) ∈ PXjoin(γ(X)).
(23)

It can be useful to designate relations between hier-
archical agent and agents belonging to its subpage.

Definition 6. Let X ∈ AH and a page Di such that
γ(X) = Di be given. For any agent Y ∈ Ai we say that
X is directly hierarchically dependent on Y and we will
denote it as X � Y .

4.3. Hierarchy elimination. The possibility of substi-
tution of an abstract description of an agent by a more
detailed one represented by a submodel (subpage) it is
very common in a system design. It is however diffi-
cult when we would like to understand (or verify) the be-
haviour of a whole system, associations among their com-
ponents and so on. Thus, in this section we introduce the
flat (non-hierarchical) abstraction of a system represented
by its hierarchical communication diagram (Kotulski and
Szpyrka, 2011). In this representation we will use only
agents and connections among them inherited from the hi-
erarchical communication diagram.

Definition 7. For any two agents X ∈ AH and Y ∈ A,
X is said to be hierarchically dependent on Y , denoted
as X � Y , iff X = Y1 � . . . � Yk = Y for some
Y1, . . . , Yn ∈ A.

Definition 8. A flat representation of a communication
diagram H = (D, γ) is the triple (F , C′, σ′) such that:

1. ∀X,Y ∈ F ⊆ A : X 6= Y ⇒ X � Y ,

2. ∀X ∈ A−AH ∃Y ∈ F : Y � X ,

3. C′ = {(X.p, Y.q) ∈ C : X,Y ∈ F},

4. σ′ = σ|AA∩F .

It is easy to check that the set of primary pages is
a flat representation of a system represented by a hierar-
chical communication diagram.

We can move from one flat system representation to
another, more detailed one, using the analysis operation.

Definition 9. Let H be a hierarchical communication
diagram, (F , C′, σ′) be a flat representation of H , X ∈
AH ∩ F and γ(X) = Di = (Ai, Ci, σi). Analysis of the
flat representation (F , C′, σ′) of the hierarchical diagram
H in context of X is the flat representation (F∗, C∗, σ∗)
(denoted AN(H,F , X)), such that:

1. F∗ = F − {X} ∪ Ai,

2. C∗ = {(Z.p, Z ′.q) ∈ C : Z,Z ′ ∈ F∗},

3. σ∗ = σ|AA∩F∗ .

Definition 10. Let H be a hierarchical communica-
tion diagram, (F , C′, σ′) be a flat representation of H ,
Y ∈ F and ∃X ∈ AH such that X � Y and γ(X) =
Di = (Ai, Ci, σi). Synthesis of the flat representa-
tion (F , C′, σ′) of the hierarchical diagram H in context
of Y is the flat representation (F∗, C∗, σ∗) (denoted as
SN(H,F , Y)) such that:

1. F∗ = F −Ai ∪ {X},

2. C∗ = {(Z.p, Z ′.q) ∈ C : Z,Z ′ ∈ F∗},

3. σ∗ = σ|AA∩F∗ .

Page D′ (presented in Fig. 8) is a flat representation
of the hierarchical system H defined by pages D1 and
D2 (presented in Fig. 3 and 4) with the simple substi-
tution mechanism. Flat representation generated by the
AN(H,D1, B) analysis operation (Fig. 8) is generated by
the following algorithm.

1. Remove the agent B from the page D1 with all its
connections.

2. Move the contents of the page D2 onto the page D1.

3. Add connections – If after removing of the agent B,
from the page D1, it has been removed a connection
between ports B.a and X1

i .p, then we add a connec-
tion between ports X1

i .p and π(B.a) with the same
direction as the removed one.

Page System (presented in Fig. 2) as a primary
page is a flat representation of the hierarchical graph
presented in Fig. 7 with pages Readers and Writers
(presented appropriately in Fig. 5 and Fig. 6) with the

Formal modelling and verification of concurrent systems with Alvis 9

Fig. 9. Application of the extended substitution.

extended substitution mechanism. Flat representation
generated by the composition of the analysis operations
AN(H,AN(H,System,Readers),Writers) is presented
in Fig. 9. This operation is supported by nearly the same
algorithm as above with one change (in the third step). If
after removing of a hierarchical agent Xi

j , it has been re-
moved a connection between ports Xi

j .p and Xi
n.q, then

we add similar connections between port Xi
n.q and all

ports from the set π(Xi
j .p).

Definition 11. A flat representation (F , C′, σ′) is called
the maximal flat representation iff

∀X ∈ A ∃Y ∈ F : X � Y. (24)
Such a maximal flat representation does not contain

hierarchical agents.

5. Code layer
The code layer is used to describe the behaviour of indi-
vidual agents in Alvis models. The layer uses Alvis be-
haviour description statements and some elements of the
Haskell functional programming language. In spite of the
fact that Alvis has its origin in CCS (Aceto et al., 2007),

(Fencott, 1995), (Milner, 1989) and XCCS (Balicki and
Szpyrka, 2009). (Matyasik, 2009) process algebras, to
make the language more convenient from the practical
(engineering) point of view, algebraic equations and oper-
ators have been replaced with statements typical for high
level programming languages. The code layer is used:

• to define data types used in the model under consid-
eration,

• to define functions for data manipulation,

• to specify an embedded system environment,

• to define behaviour of individual agents.

A detailed description of the Alvis statements can be
found in (Szpyrka, Matyasik and Mrówka, 2011) and at
the Alvis project web site (Szpyrka, 2012). As we con-
sider untimed Alvis models with the α0 system layer and
without border ports, the set of allowed statements is given
in Table 1. To simplify the syntax presentation, the follow-
ing symbols have been used. A stands for an agent name,
p stands for a port name, x stands for a parameter, g, g1,
g2,... stand for guards (Boolean conditions), and expr
stands for an expression.

10 M. Szpyrka, et. al

Fig. 8. Application of the simple substitution.

6. Models
An Alvis model is defined as a triple with a hierarchical
communication diagram as shown in Definition 12.

Definition 12. An Alvis model is a triple A = (H,B,ϕ),
where:

• H = (D, γ) is a hierarchical communication dia-
gram,

• B is a syntactically correct code layer,

• ϕ is a system layer.

Moreover, each non-hierarchical agentX belonging to the
diagram H must be defined in the code layer, and each
agent defined in the code layer must belong to the dia-
gram.

For an Alvis model A = (H,B,ϕ), its equivalent
non-hierarchical model is a triple A = (D,B,ϕ), where
D is the maximal flat representation of H .

It should be underlined that a syntactically correct
code layer means also that the following condition for
ports is also satisfied. A port X.p ∈ P can be used
as an argument of the in statement iff there exists a port
X ′.p′ ∈ P , such that (X ′.p′, X.p) ∈ C. Similarly, a
port X.p ∈ P can be used as an argument of the out
statement iff there exists a port X ′.p′ ∈ P , such that
(X.p,X ′.p′) ∈ C.

As it was already shown, one can consider the max-
imal flat representation of a communication diagram in-
stead of a hierarchical model. Thus, from now on, we will

Table 1. Alvis statements allowed in untimed models with α0

system layer
Statement Description
exec x = expr Evaluates the expression and

assigns the result to the pa-
rameter; the exec keyword
can be omitted.

exit Terminates an active agent
or a passive agent procedure.

if (g1) {...} Conditional statement.
elseif (g2) {...}

elseif (g3) {...}

...

else {...}

in p Collects a signal/value
in p x through port p.
jump label Transfers the control to the

line of code identified with
the label.

loop {...} Infinite loop.
loop (g) {...} Repeats execution of the

contents while the guard if
satisfied..

null Empty statement.
out p Sends a signal/value through
out p x the port p.
proc (g) p {...} Defines the procedure for

port p of a passive agent.
The guard is optional.

select { Selects one of alternative
alt (g1) {...} choices.
alt (g2) {...}

...

}

start A Starts the agent A if it is in
the Init state, otherwise do
nothing.

consider only A = (D,B, α0) models. To define a state
of an Alvis model, we need to define a state of a single
agent.

Definition 13. A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pv(X)), (25)

where am(X), pc(X), ci(X) and pv(X) denote mode,
program counter, context information list and parameters
values of the agent X respectively.

All possible modes and transitions among them are
shown in Fig. 10.

finished – The mode means that an agent has finished its
work or it has been terminated using the exit state-
ment.

Formal modelling and verification of concurrent systems with Alvis 11

b)
waiting taken

running waiting

initfinished

a)

Fig. 10. Possible transitions among modes: a) active agents, b)
passive agents.

init – This is the default mode for agents that are inac-
tive in the initial state. An agent can be activated by
another one with the start statement.

running – The mode means that an agent is performing
one of its statements.

taken – The mode means that one of the passive agent
procedures has been called and the agent is executing
it.

waiting – For passive agents, the mode means that the
corresponding agent is inactive and waits for another
agent to call one of its accessible procedures. For
active agents, the mode means that the correspond-
ing agent is waiting either for a communication with
another active agent, or for a currently inaccessible
procedure of a passive agent.

The program counter points out the current statement
of an agent i.e. the next statement to be executed or the
statement that has been executed by an agent but needs
a feedback from another agent to be completed (e.g. a
communication between two active agents). Relationships
between the mode and the program counter of an agent are
shown in Table 2.

• We say that pc(X) points out an exec (exit, jump,
null, start) statement iff the next statement to be exe-
cuted is an exec (exit, jump, null, start) statement.

• We say that pc(X) points out an if statement iff the
next statement to be executed is the evaluating of the
guard and possibly entering one of the if statement
alternatives.

• We say that pc(X) points out a loop statement iff
the next statement to be executed is the evaluating
of the guard (if any) and possibly entering the loop
statement.

• We say that pc(X) points out a select statement iff
the next statement to be executed is entering the se-
lect statement and possibly one of its branches.

• We say that pc(X) points out an in or out statement
iff the next statement to be executed is an in or out
statement or the last executed statement is in or out
and the agent is waiting for the communication to be
completed (either with an active or a passive agent).

Table 2. Relationships between the mode and the program
counter of an agent

am(X) pc(X)

finished 0
init 0
running current statement
taken current statement of the

called procedure
waiting (active agent) current statement
waiting (passive agent) 0

The context information list contains additional in-
formation about the current state of an agent e.g. if an
agent is the waiting mode, ci contains information about
events the agent is waiting for. Possible entries put into
ci lists are given in Table 3. If an agent is in the init or
finished mode, its context information list is empty.

The parameters values list contains the current val-
ues of the agent parameters.

A model state is sequence (list) of all agents states.

Definition 14. A state of a model A = (D,B,ϕ), where
D = (A, C, σ) and A = {X1, . . . , Xn} is a tuple

S = (S(X1), . . . , S(Xn)). (26)

Definition 15. The initial state of a model A = (D,B,
α0) is a tuple S0 as given in (26), where:

• am(X) = running, for any active agent X such
that σ(X) = True;

• am(X) = init, for any active agent X such that
σ(X) = False;

• am(X) = waiting, for any passive agent X;

• pc(X) = 1 for any active agent X in the running
mode and pc(X) = 0 for other agents.

• ci(X) = [] for any active agent X;

• For any passive agent X , ci(X) contains names of
all accessible ports of X (i.e. names of all accessible
procedures) together with the direction of parameters
transfer, e.g. in(a), out(b), etc.

• For any agentX , pv(X) containsX parameters with
their initial values.

12 M. Szpyrka, et. al

Table 3. Relationships between the mode and the context information list of an agent

agent X am(X) ci(X) entry description
active running/

waiting
proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed

in the X agent context
active waiting in(a),

in(a|T)
X waits for a communication via port X.a (X.a is the input port for this com-
munication); T is the type of the expected value

out(a),
out(a|T)

X waits for a communication via port X.a (X.a is the output port for this
communication)

guard X waits for an open branch of a select statement
passive taken proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed

in the same context as the X procedure
guard X waits for an open branch of a select statement

passive waiting in(a) input procedure X.a is accessible
out(a) output procedure X.a is accessible

Steps performed by a model are described using the
transition idea. The set of all possible transitions for the
considered Alvis models is given in Table 4.

Table 4. Set of transitions
Symbol Description

1 texec performs an evaluation and assignment
2 texit terminates an agent or a procedure
3 tif enters an if statement
4 tin performs communication (input side)
5 tjump jumps to a label
6 tloop enters a while or infinite loop
7 tnull performs an empty statement
8 tout performs communication (output side)
9 tselect enters a select statement

10 tstart starts an inactive agent
11 tio performs communication (both sides)

To define formally results of transitions execution,
we have to provide some mechanisms for code analysis.
Let us define the following symbols.

• B(X) – the X agent code definition (the agent
block);

• card(B(X)) – the number of steps in B(X);

• Bi(X) for i = 1, . . . , card(B(X)) – the name of
the agent X i-th step, Bi(X) ∈ {exec, exit , if , in,
jump, loop,null , out , select , start}.

• N (t) – the name of the transition t (possible values
the same as for steps).

• If necessary am, pc, ci, pv will be indicated by in-
dexes S, S′ etc. to point out the state they refer to.

The set of all transitions available for a particular
model will be denoted by T . For example, the tstart is

available for a model A = (D,B, α0) iif ∃X ∈ A,∃i ∈
{1, . . . , card(B(X))} : Bi(X) = start .

Let us focus on the step idea. It is necessary to dis-
tinguish between code statements and steps. More state-
ments e.g. exec, exit , in , etc. are single-step statements.
On the other hand, if , loop and select are multi-step state-
ments. We use recursion to count the number of steps
for multi-step statements. For each of these statements,
the first step enters the statement interior. Then, we count
steps of statements put inside curly brackets. For a given
statement s, let stepno(s) denote the number of the step
related to s. For multi-step statements, stepno(s) denotes
the number of the step connected with entering the state-
ment interior.

agent A {
i :: Int = 0;
loop { -- 1
select { -- 2

alt (i == 0) { in p; i = 1;} -- 3, 4
alt (i == 1) { in q; i = 0;} -- 5, 6

}
if(i == 1) { out p;} -- 7, 8
else { null; } -- 9

}
}

Listing 1. Steps counting in Alvis code

Let us consider the piece of code shown in List-
ing 1. It contains 9 steps. The steps number are put inside
comments. For example, the step 7 denotes entering the
if statement, while the step 8 denotes the out statement.
For passive agents, only statements inside procedures (i.e.
inside curly brackets) are taken into consideration while
counting steps.

To simplify the formal description of transitions, we
need a function that determines the next program counter
for an agent. For the purposes of this discussion block

Formal modelling and verification of concurrent systems with Alvis 13

means a piece of a code inside curly brackets and last
block statement means that the statement is the last one
in the block and is followed by the closing curly bracket.
Depending on the surrounding statement we will consider:
if blocks (any of the blocks after if, elseif or else clauses),
loop blocks, branch blocks (alt clauses), procedure blocks
and agent blocks (a main agent’s block).

Let us focus on code statements first. The nextst
function (next statement) is used to determine the succes-
sor statement for a given one. The function returns empty
statement if there is no a successor statement for the con-
sidered one. The number of the empty statement is equal
to 0. This recursive function is based on the following
rules:

1. If s is a jump statement then nextst(s) is the first
statement after the jump statement label.

2. If s is an exit statement then nextst(s) is the empty
statement.

3. If s ∈ {exec, if , in, loop,null , out , select , start}
and s is not the last block statement then nextst(s) is
the statement that follows s in the code layer.

4. If s ∈ {exec, if , in, loop,null , out , select , start}
and s is the last main block statement or the last pro-
cedure block then nextst(s) is the empty statement.

5. If s ∈ {exec, if , in, loop,null , out , select , start}
and s is the last if (loop, select) block statement then
nextst(s) = nextst(s′), where s′ is the surrounding
if (loop, select) statement.

A graph representation of the nextst function for the
code presented in Listing 1 is shown in Fig. 11. For ex-
ample, the next statement for the exec statement number 6
is the if statement (statement number 7).

Fig. 11. Graph representation of the nextst function for the code
presented in Listing 1.

A similar nextpc (next program counter) function de-
termines the number of the next step (the next program
counter for an agent). Similarly, we use concepts like last
block step, last if block step, etc. to point out the last step
inside a given code block. It is possible that there is no the

last main block step e.g. if an agent behaviour is defined
with an infinite loop (see Listing 1).

The nextpc function takes an agent X state as an
argument and returns an integer in the range of 0 to
card(B(X)). The function satisfies the following require-
ments for the current step t:

1. If t = exit then nextpc(S(X)) = 0.

2. If t ∈ {exec, in,null , out , start} then:

• if t is not the last block step then:
nextpc(S(X)) = pcS(X) + 1;

• if t is the last main block step or the last proce-
dure block step then nextpc(S(X)) = 0;

• if t is the last loop block step then:
nextpc(S(X)) = stepno(s),
where s is the loop statement;

• if t is the last branch block step then:
nextpc(S(X)) = stepno(nextst(s)),
where s is the surrounding select statement.

• if t is the last if block step then:
nextpc(S(X)) = stepno(nextst(s)),
where s is the surrounding if statement.

3. If t = jump step then nextpc(S(X)) returns the
number of the first step after the corresponding label.

4. If t = if then:

• nextpc(S(X)) is equal to the number of the
first step inside the chosen if block, if such a
block has been chosen;

• nextpc(S(X)) = stepno(nextst(s)), where s
is the if statement otherwise.

5. If t = loop then:

• if the loop guard is satisfied or for an infinite
loop nextpc(S(X)) = pcS(X) + 1;

• if the loop guard is not satisfied then:
nextpc(S(X)) = stepno(nextst(s)),
where s is the loop statement.

6. If t = select then nextpc(S(X)) returns the number
of the first step inside the chosen branch block.

A graph representation of the nextpc function for the
code presented in Listing 1 is shown in Fig. 12.

To describe a ci list modifications we will use the
following operators:

• e ∈ ci – returns true if the element e belongs to the
ci list and false otherwise.

• ci ⊕ e – if e /∈ ci then adds the element e at the end
of the list.

• ci 	 e – if e ∈ ci then removes the element e from
the list.

14 M. Szpyrka, et. al

Fig. 12. Graph representation of the nextpc function for the code
presented in Listing 1.

7. Transitions
We will consider behaviour of Alvis models at the level
of detail of single steps. Each of transitions presented in
Table 4 realises a single step. Each step is realised in the
context of one active agent. Also procedures of passive
agents are realised in context of active agents that called
them. Firstly, we will focus on active agents only.

Definition 16. Assume A = (D,B, α0) is an Alvis
model with the current state S = (S(X1), . . . , S(Xn))
and Xi ∈ AA. A transition t ∈ T is enable in the state S
with respect to Xi (denoted as S−t(X)→) iff the follow-
ing requirement holds:

am(Xi) = running ∧ Bpc(Xi)(Xi) = N (t). (27)

The fact that a transition t is enable in a state S with
respect to an agent X and the state S′ that is the result of
executing t in S will be denoted by S−t(X)→S′. If case
of four transitions, an extended version of this notation
will be used:

• S−tstart(X,Y)→S′, where Y is the argument of the
corresponding start statement;

• S−tin(X.p, T)→S′, S−tout(X.p, T)→S′, where
X.p is the port used for the communication and T
is the type of send/collected value. If necessary, the
special Empty type will be used to denote a valueless
communication.

• S−tio(X.p, Y.q, T)→S′, where X.p and Y.q are the
input and output ports for the communication respec-
tively and T is the type of the transferred value.

This section describes the states that are results of ex-
ecuting all possible steps. We will limit the definitions to
description of agents, which states change. Agent, which
states remain unchanged are omitted in the description.

Let pvS(X)|v=a denote the list of parameters values
pvS(X), but with the parameter v assigned to a new value
a. If X ∈ AA, S−texec(X)→S′, and a parameter v is
assign a value a with the corresponding exec statement,
then:

• S′(X) = (running,nextpc(S(X)), ciS(X),
pvS(X)|v=a), if nextpc(S(X)) 6= 0,

• S′(X) = (finished, 0, [], pvS′(X)),
if nextpc(S(X)) = 0.

If X ∈ AA and S−texit(X)→S′, then:

• S′(X) = (finished, 0, [], pvS(X)),

If t ∈ {if , loop,null}, X ∈ AA and S−t(X)→S′ then:

• S′(X) = (running,nextpc(S(X)), ciS(X),
pvS(X)), if nextpc(S(X)) 6= 0.

• S′(X) = (finished, 0, [], pvS(X)),
if nextpc(S(X)) = 0.

If X ∈ AA and S−tjump(X)→S′, then:

• S′(X) = (running, nextpc(S(X)), ciS(X),
pvS(X)).

If X ∈ AA and S−tselect(X)→S′, then:

• If at least one branch of the statement is open then
S′(X) = (running, nextpc(S(X)), ciS(X),
pvS(X)).

• If all branches are closed then
S′(Xi) = (waiting, pcS(Xi),
ciS(X)⊕ guard, pvS(X)).

If X,Y ∈ AA and S−tstart(X,Y)→S′, then:

• S′(X) = (running,nextpc(S(X)), ciS(X),
pvS(X)), if nextpc(S(X)) 6= 0.

• S′(X) = (finished, 0, [], pvS(X)),
if nextpc(S(X)) = 0.

• If amS(Y) = init, then
S′(Y) = (running, 1, [], pvS(Y)),
otherwise S′(Y) = S(Y).

Steps of passive agents are always considered in the
context of an active one. Thus, to define enable transitions
for passive agents, it is necessary to consider behaviour of
at least a pair of agents.

Definition 17. Assume A = (D,B, α0) is an Alvis
model with the current state S = (S(X1), . . . , S(Xn)),
X ∈ A and Y ∈ AP .

Formal modelling and verification of concurrent systems with Alvis 15

• We say that X is (directly) performing input pro-
cedure Y.q via its port p iff (X.p, Y.q) ∈ C,
proc(Y.q, p) ∈ ciS(X) and amS(Y) = taken.

• We say that X is (directly) performing output
procedure Y.q via its port p iff (Y.q,X.p) ∈ C,
proc(Y.q, p) ∈ ciS(X) and amS(Y) = taken.

• We say that X is performing a procedure of an agent
Y iff X is performing an input or output procedure
of Y via one of its ports.

• We say that X is indirectly performing input (out-
put) procedure Y.q iff exist X1

k , . . . , X
m
k , m > 0

such that X is performing a procedure of X1
k , X1

k is
performing a procedure of X2

k , . . . , Xm
k is perform-

ing input (output) procedure Y.q via one of its ports.
For any passive agent Y performing one of its pro-
cedures, context(Y) will denote the active agent X
that directly or indirectly performs the procedure.

Definition 18. Assume A = (D,B, α0) is an Alvis mo-
del with the current state S = (S(X1), . . . , S(Xn)) and
X ∈ AA, Y ∈ AP are agents such that X is directly or
indirectly performing input (or output) procedure Y.q via
its port p. A transition t ∈ T is enable in the state S with
respect to Y iff the following requirement holds:

am(X) = running ∧ Bpc(Y)(Y) = N (t). (28)

Performing the in or out statements may influence
more than one agent state. Very often two agents con-
nected with a communication channel perform their com-
munication statements simultaneously. Such a communi-
cation is possible only if types of sending and collecting
values are the same. Moreover, if a few agents try to com-
municate at the same time, their priorities are taken into
consideration to determine pairs of agents that perform
their communication statements simultaneously using the
same communication channels. Similarly, if an agents
calls an available procedure of a passive agent, states of
two agents change (in spite of the fact that only one of
them performs a step).

Assume A = (D,B, α0) is an Alvis model with the
current state S = (S(X1), . . . , S(Xn)). Let type(X.p)
denote the type of a procedure p argument for a passive
agent X (The Empty type can be used if none argument is
used.) In case of active agents, typeS(X.p) will denote the
type of sent (expected) argument for already performed
out (in) step. Let us define the following set of pairs:

CommAA
S = {(X,Y) : X,Y ∈ AA ∧

∧ S−tin(X.p, T)→∧ S−tout(Y.q, T)→ ∧
∧ (Y.q,X.p) ∈ C} (29)

CommAP
S = {(X,Y) : X ∈ AA ∧ Y ∈ AP ∧

∧ S−tin(X.p, T)→∧ am(Y) = waiting ∧
∧ out(q) ∈ ci(Y) ∧ type(Y.q) = T ∧

∧ (Y.q,X.p) ∈ C} ∪
∪ {(X,Y) : X ∈ AA ∧ Y ∈ AP ∧

∧ S−tout(X.p, T)→∧ am(Y) = waiting ∧
∧ in(q) ∈ ci(Y) ∧ type(Y.q) = T ∧

∧ (X.p, Y.q) ∈ C} (30)
CommPP

S = {(X,Y) : X,Y ∈ AP ∧
∧ S−tin(X.p, T)→∧ am(Y) = waiting ∧

∧ out(q) ∈ ci(Y) ∧ type(Y.q) = T ∧
∧ (Y.q,X.p) ∈ C} ∪

∪ {(X,Y) : X,Y ∈ AP ∧ S−tout(X.p, T)→ ∧
∧ am(Y) = waiting ∧ in(q) ∈ ci(Y) ∧

∧ type(Y.q) = T ∧ (X.p, Y.q) ∈ C} (31)
CommF

S = {(X,Y) : X,Y ∈ AA ∧
∧ S−tin(X.p, T)→ ∧

∧ am(Y) = waiting ∧ out(q) ∈ ci(Y) ∧
∧ typeS(Y.q) = T ∧ (Y.q,X.p) ∈ C} ∪

∪ {(X,Y) : X,Y ∈ AA ∧ S−tout(X.p, T)→ ∧
∧ am(Y) = waiting ∧ in(q) ∈ ci(Y) ∧
∧ typeS(Y.q) = T ∧ (X.p, Y.q) ∈ C} (32)

Comm∗S = CommAA
S ∪ CommAP

S ∪
∪ CommPP

S ∪ CommF
S (33)

Next, we divide all agents enable for communication
in the state S into two disjoint sets:

Comm2
S = {X ∈ A : ∃Y ∈ A ∧

∧ ((X,Y) ∈ CommAA
S ∪ CommAP

S ∪
∪ CommPP

S ∪ CommF
S ∨

∨ (Y,X) ∈ CommAA
S)} (34)

Comm1
S = {X ∈ A : (S−tin(X.p, T)→ ∨

∨ S−tout(X.p, T)→) ∧X /∈ Comm2
S} (35)

It’s hardly possible that all agents from the set
Comm1

S ∪ Comm2
S can perform they communication

steps simultaneously. Usually, agents compete for the
same agents and we can observe some conflicts in a
model. Let us consider the communication diagram
shown in Fig. 13. Suppose, that for a considered state
S the following conditions hold:

• S−tout(A.p, T)→,

• S−tout(B.p, T)→,

• S−tin(C.p, T)→,

16 M. Szpyrka, et. al

Fig. 13. Communication conflicts

• amS(D) = running ,

• context(M) = D, S−tout(M.y, T)→,

• amS(K) = waiting , ciS(K) = [in(x), in(y)],
type(K.x) = type(K.y) = T ,

• amS(L) = waiting , ciS(L) = [in(x), in(y)],
type(L.x) = type(L.y) = T .

Thus, we have:

• CommAA
S = {(C,A)},

• CommAP
S = {(A,K), (B,K)},

• CommPP
S = {(M,K), (M,L)},

• CommF
S = ∅,

• Comm2
S = {A,B,C,M}

• Comm1
S = ∅.

It easy to see that have conflicts in the state S: agents
A and B compete for the procedure K.x, and agents B
and M compete for an access to agent K.

Alvis uses a reverse priorities range. The code layer
priorities range from 0 to 9, where 0 is the higher system
priority. From the theoretical point of it is more conve-
nient to use the pr function defined as follows

pr(X) = 9− codePriority(X) (36)

Using different agents priorities can eliminate most
of potentials conflicts in a model. For example, if
pr(A) > pr(B) then there is no conflict between agents
A and B, but it does not mean that agent A will perform
the procedure K.x. Selecting communication steps that
can be perform in a given state is based on Algorithm 1.

The output of the algorithm are two sets. The set
Comm2

S

′ ⊂ Comm2
S contains pair of agents representing

communication steps that are to be perform in state S con-
currently and concern pairs of agents. The set Comm1

S

′

contains agents that may perform communication steps on
their own.

Let us go back to the model considered previously
(see Fig. 13). Suppose, the code priority for all active
agents is equal to 0 and for all passive agents to 1. Thus,

pr(A) = pr(B) = pr(C) = pr(D) = 9 (37)
pr(K) = pr(L) = pr(M) = 8 (38)

After the first performing of the while loop interior
(see Algorithm 1) we have:

• Comm ′S = {A,B,C},

• Comm ′′S = {(C,A), (A,K), (B,K)},

• CommS = {(C,A)},

• CommAA
S = ∅,

• CommAP
S = {(B,K)},

• CommPP
S = {(M,K), (M,L)},

• CommF
S = ∅,

• Comm∗S = {(B,K), (M,K), (M,L)},

• Comm2
S = {B,M}.

Then, after the second performing of the while loop inte-
rior we have:

• Comm ′S = {B},

• Comm ′′S = {(B,K)},

• CommS = {(C,A), (B,K)},

• CommAA
S = CommAP

S = ∅,

• CommPP
S = {(M,L)},

• CommF
S = ∅,

• Comm∗S = {(M,L)},

• Comm2
S = {M}.

Finally, we have Comm2
S

′
= {(C,A), (B,K), (M,L)}

and Comm1
S

′
= ∅.

Formal modelling and verification of concurrent systems with Alvis 17

Algorithm 1 Selecting concurrent communication steps
CommS = ∅
calculate CommAA

S , CommAP
S , CommPP

S , CommF
S , Comm∗S , Comm2

S , Comm1
S

. (see (29)-(35))
while Comm2

S 6= ∅ do
Comm ′S = {X ∈ Comm2

S : X has the highest priority in Comm2
S}

Comm ′′S = {(X,Y) ∈ Comm∗S :
(
X ∈ Comm ′S ∨ Y ∈ Comm ′S

)
}

take a pair (X ′, Y ′) ∈ Comm ′′S with the highest sum of agents’ priorities
. if there is a few such pairs take one of them

CommS = CommS ∪ {(X ′, Y ′)}
CommAA

S = CommAA
S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}

CommAP
S = CommAP

S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}
CommPP

S = CommPP
S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}

CommF
S = CommF

S − {(P,Q) : P = X ′ ∨ P = Y ′ ∨Q = X ′ ∨Q = Y ′}
calculate sets Comm∗S , Comm2

S . (see (33)-(34))
end while
calculate Comm1

S . (see 35)
Comm1

S

′
= Comm1

S − CommS

Comm2
S

′
= CommS

. the new set Comm1
S

′
may contain more elements than initially Comm1

S

Suppose the priority function pr is defined as fol-
lows:

pr(A) = pr(B) = pr(C) = pr(D) = 8 (39)
pr(K) = pr(L) = pr(M) = 9 (40)

Then, while the first performing of the while loop interior
we have:

• Comm ′S = {M},

• Comm ′′S = {(M,K), (M,L)},

In such a case, we an indeterministic choice between these
two pairs. If (M,L) is chosen, then we have next an-
other indeterministic choice between (A,K) and (B,K).
Then, if (A,K) is chosen, we have finally, Comm2

S

′
=

{(M,L), (A,K)} and Comm1
S

′
= {B,C}.

Now, let us focus on performing communication
steps. There are following possible cases:

1. (X,Y) ∈ Comm2
S

′ ∩ CommAA
S ,

2. (X,Y) ∈ Comm2
S

′ ∩ CommAP
S ,

3. (X,Y) ∈ Comm2
S

′ ∩ CommPP
S ,

4. (X,Y) ∈ Comm2
S

′ ∩ CommF
S ,

5. X ∈ Comm1
S

′ ∩ AA and S−tin(X.p, T)→S′,

6. X ∈ Comm1
S

′ ∩ AA and S−tout(X.p, T)→S′,

7. X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′, and p /∈
Pproc(X),

8. X ∈ Comm1
S

′∩AP , S−tout(X.p, T)→S′, and p /∈
Pproc(X),

9. X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′, and p ∈
Pproc(X),

10. X ∈ Comm1
S

′∩AP , S−tout(X.p, T)→S′, and p ∈
Pproc(X).

ad. 1. Suppose, (X,Y) ∈ Comm2
S

′ ∩ CommAA
S ,

S−tin(X.p, T)→, x is the second argument of the cor-
responding in statement, S−tout(Y.q, T)→, and value w
of type T is sent. In such a case, instead of transitions tin
and tout, the transition tio is used to represent the commu-
nication. Let S−tio(X.p, Y, q, T)→S′, then:

• S′(X) = (running,nextpc(S(X)), ciS(X),
pvS(X)|x=w) if nextpc(S(X)) 6= 0.

• S′(X) = (finished, 0, [], pvS(X)|x=w)
if nextpc(S(X)) = 0.

• S′(Y) = (running,nextpc(S(Y)), ciS(Y), pvS(Y))
if nextpc(S(Y)) 6= 0.

• S′(Y) = (finished, 0, [], pvS(Y))
if nextpc(S(Y)) = 0.

If a valueless communication is considered then pvS(X)
remains unchanged.

ad. 2. Suppose, (X,Y) ∈ Comm2
S

′ ∩ CommAP
S ,

S−tin(X.p, T)→S′ (or S−tout(X.p, T)→S′), and pro-
cedure Y.q is called. Then:

18 M. Szpyrka, et. al

• S′(X) = (running, pcS(X),
ciS(X)⊕ proc(Y.q, p), pvS(X)).

• S′(Y) = (taken, 1, [], pvS(Y)).

ad. 3. Suppose, (X,Y) ∈ Comm2
S

′ ∩ CommPP
S ,

S−tin(X.p, T)→S′ (or S−tout(X.p, T)→S′), and pro-
cedure Y.q is called. Then:

• S′(X) = (taken, pcS(X),
ciS(X)⊕ proc(Y.q, p), pvS(X)).

• S′(Y) = (taken, 1, [], pvS(Y)).

ad. 4. This case is similar to the first case. The new
state is defined in the same way. The only difference is
that one of these agents has performed its communication
step earlier.

ad. 5. Let X ∈ Comm1
S

′ ∩ AA, S−tin(X.p, T)→S′.
Then:

• S′(X) = (waiting, pcS(X), ciS(X)⊕ in(p|T),
pvS(X)).

If the port p is used to collect values of one type only, then
the in(p) entry is used instead of in(p|T).

ad. 6. This case is similar to the previous one, but the
out(p|T) (or out(p)) entry is used.

ad. 7. Let X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′,
p /∈ Pproc(X) (X calls a procedure of another agent), and
Y = context(X). Then:

• S′(X) = (taken, pcS(X), ciS(X)⊕ in(p|T),
pvS(X)).

• S′(Y) = (waiting, pcS(Y), ciS(Y), pvS(Y)).

If the port p is used to collect values of one type only, then
the in(p) entry is used instead of in(p|T).

ad. 8. This case is similar to the previous one, but the
out(p|T) (or out(p)) entry is used.

ad. 9. Let X ∈ Comm1
S

′ ∩ AP , S−tin(X.p, T)→S′,
p ∈ Pproc(X), and Y = context(X). This means that
Y is directly or indirectly performing the procedure X.p.
Performing the S−tin(X.p, T)→S′ step means that the
procedure collects its input parameter. Let x be the second
argument of the corresponding in statement and a value w
was sent while the procedure call. If the in statement is
not the last procedure statement then:

• S′(X) = (taken,nextpc(S(X)), ciS(X),
pvS(X)|x=w).

If a valueless communication is considered then pvS(X)
remains unchanged.

If the in statement is the last procedure statement then
the procedure is finished. Suppose, Y is indirectly per-
forming the procedureX.p and existX1, . . . , Xm,m > 0
such that Y is performing a procedure of X1, X1 is per-
forming a procedure of X2, . . . , Xm is performing input
procedure X.p via port pm.

Let calledS(X,P) denote the set of agents that po-
tentially called one of X procedures from the set P ⊆
Pproc(X):

calledS(X,P) = {Z : ((Z ∈ AA ∧
∧ amS(Z) = waiting ∧ guard /∈ ciS(Z)) ∨
∨ (Z ∈ AP ∧ amS(context(Z)) = waiting ∧
∧ guard /∈ ciS(Z))) ∧ (∃p ∈ P, ∃q ∈ P(Z) :
((X.p, Z.q) ∈ C ∧ in(q|type(X.p)) ∈ ciS(Z)) ∨
∨ ((Z.q,X.p) ∈ C ∧
∧ out(q|type(X.p)) ∈ ciS(Z)))} (41)

The term potentially called means that it is possi-
ble that port Z.q is connected with a few ports and the
communication via this port can be finalized as a com-
munication with another active agent or another passive
one (different than X). When performing of a procedure
X.p is finished, guards of all procedures of X are evalu-
ated and a set P of available procedures is received. If at
least one of them has been already potentially called i.e.
calledS(X,P) 6= ∅ then X starts another procedure im-
mediately. If card(calledS(X,P)) > 1 then one agent
with the highest priority is chosen.

Suppose, Z ∈ AA is the chosen agent that starts per-
forming a procedure X.p′ via port r. Then:

• S′(X) = (taken, 1, [], pvS(X)|x=w).

• S′(Z) = (running, pcS(Z),
ciS(Z)⊕ proc(X.p′, r), pvS(Z)).

• S′(Xm) = (taken,nextpc(S(Xm)), ciS(X
m) 	

proc(X.p, pm), pvS(X
m)), if calling the procedure

X.p was not the last procedure block step for Xm.
Otherwise, the correspondingXm procedure has fin-
ished and the new state for Xm and Xm−1 is deter-
mined as previously for X and Xm (if an input pro-
cedure has been called) or as described at point 10 (if
an output procedure has been called).

Suppose, Y is directly performing the procedureX.p
via its port q. Then, the new state for X (and Z if any) is
defined as above, and:

• S′(Y) = (running,nextpc(S(Y)),
ciS(Y)	 proc(X.p, q), pvS(Y))

Formal modelling and verification of concurrent systems with Alvis 19

Suppose, calledS(X,P) = ∅. Besides agents be-
longing to the set calledS(X,P), there may exist agents
that are waiting for accessibility of X procedures in or-
der to fulfil their select statements guards. Let the set
callableS(X,P) be defined as follows:

callableS(X,P) = {Z : ((Z ∈ AA ∧
∧ amS(Z) = waiting ∧ guard ∈ ciS(Z)) ∨
∨ (Z ∈ AP ∧ amS(context(Z)) = waiting ∧
∧ guard ∈ ciS(Z)))

∧ accessibility of procedures belonging to P
makes at least one branch of the corresponding
select statement open} (42)

Thus, the state S′ is defined as follows:

• S′(X) = (waiting, 0, ci′S(X), pvS(X)|x=w),
where ci′S(X) contains all ports from P together
with the direction of parameters sending e.g. in(p1),
out(p2), etc.

• States of Y,X1, . . . , Xm are defined as previously.

• S′(Z) = (running,nextpc(S(Z)),
ciS(Z)	 guard, pvS(Z)),
for any Z ∈ callableS(X,P) ∩ AA.

• S′(Z) = (taken,nextpc(S(Z)),
ciS(Z)	 guard, pvS(Z)),
for any Z ∈ callableS(X,P) ∩ AP .

• S′(Z ′) = (running, pcS(Z
′), ciS(Z

′), pvS(Z
′)),

for any Z ∈ callableS(X,P) ∩ AP
and Z ′ = context(Z).

In all above cases, if a valueless communication is
considered then pvS(X) remains unchanged.

ad. 10. LetX ∈ Comm1
S

′∩AP , S−tout(X.p, T)→S′,
p ∈ Pproc(X), and Y = context(X). As previously,
Y is directly or indirectly performing the procedure X.p.
Performing the S−tout(X.p, T)→S′ step means that the
procedure returns its result. Let x be the second argument
of the corresponding out statement and a value w is sent.

Suppose, Y is directly performing the procedureX.p
and the out statement is not the last procedure statement.
In such a case, the state S′ is defined as follows:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)).

• S′(Y) = (running, pcS(Y), ciS(Y), pvS(Y)|x=w).
If a valueless communication is considered then pvS(X)
remains unchanged.

Suppose, Y is indirectly performing the procedure
X.p and exist X1, . . . , Xm, m > 0 such that Y is per-
forming a procedure ofX1, X1 is performing a procedure
of X2, . . . , Xm is performing output procedure X.p via
one of its ports. Then:

• S′(X) = (taken,nextpc(S(X)), ciS(X), pvS(X)).

• S′(Xm) = (taken, pcS(X
m), ciS(X

m),
pvS(X

m)|x=w).

As previously, if a valueless communication is considered
then pvS(X) remains unchanged.

If the out statement is the last procedure statement
then states of agents changes as described at point 9. The
only difference is the direction of a value transfer i.e. the
parameters value list that is updated belongs to the agent
that called the corresponding procedure.

Results of transitions performing for passive agents
are defined similarly as for active ones. The only differ-
ence is the problem of the last statement in a procedure
block. For example, if X ∈ AP , S−texec(X)→S′, a pa-
rameter v is assign a value a with the exec statement, and
the statement is not the last one in the corresponding pro-
cedure block, then the state S′ is defined as follows:

• S′(X) = (taken,nextpc(S(X)), ciS(X),
pvS(X)|v=a).

If the exec statement is the last one in the corresponding
procedure block, then the procedure is finished and the
state of the model changes as described previously for the
tin transition.

In similar way are defined new states for a transition
t ∈ {tif , tjump , tloop , tnull , tselect , tstart}. The exit state-
ment always finishes the corresponding procedure. It can-
not be placed before the procedure in (out) statement used
to collect the procedure argument (return the procedure
result).

8. LTS graphs
Assume A = (D,B, α0) is an Alvis model. For a pair
of states S, S′ we say that S′ is directly reachable from
S iff there exists t ∈ T such that S−t→S′. We say that
S′ is reachable from S iff there exist a sequence of states
S1, . . . , Sk+1 and a sequence of transitions t1, . . . , tk ∈
T such that S = S1−t1→S2−t2→. . .−tk→Sk+1 = S′.
The set of all states that are reachable from the initial state
S0 is denoted byR(S0).

States of an Alvis model and transitions among them
are represented using a labelled transition system (LST
graph for short (Szpyrka and Kotulski, 2011), (Kotulski
et al., 2011)). An LTS graph is directed graph LTS =
(V,E, L), such that V = R(S0), L = T , and E =
{(S, t, S′) : S−t→S′ ∧ S, S′ ∈ R(S0)}. In other words,
an LTS graph presents all reachable states and transitions
among them in the form of the directed graph.

To illustrate the idea of LTS graph let us consider two
simple examples of Alvis models. The first model shown
in Fig. 14 represents two active agents that communicate
one with another. The X1 agent is a sender and X2 is a

20 M. Szpyrka, et. al

agent X1 {
loop { -- 1

out p; } -- 2
}

agent X2 {
loop { -- 1

in q; } -- 2
}

Fig. 14. Example 1.

receiver. The LST graph for this model is shown in Fig 15.
The graph is another approach to explain the rules of the
Alvis communication between active agents.

Fig. 15. Example 1 – LTS graph.

The second model is presented in Fig. 16. It deals
with a communication between an active and a passive or
two passive agents. The states in the LTS graph illustrate
the way agents states change while such a communication.
The most interesting parts of these states are modes and
context information lists.

The graphical form of LTS graphs presentation is
very useful from users point of view. An LTS graph gen-
erated automatically for a model is stored in a textual
file. For verification purposes such graphs are transformed
into the Binary Coded Graphs (BCG) format. Finally, its
properties are verified with the CADP toolbox (Garavel
et al., 2007). CADP offers a wide set of functionalities,
ranging from step-by-step simulation to massively paral-

agent X1 {
loop { -- 1
out p; } -- 2

}

agent X2 {
proc q1 { in q1; -- 1

out q2 } -- 2
}

agent X3 {
proc r { in r; -- 1

null; } -- 2
}

Fig. 16. Example 2.

lel model-checking.

9. Summary
A description of Alvis, a formal language for modelling of
concurrent (especially embedded) systems has been pre-
sented in the paper. With the α0 system layer Alvis pro-
vides an alternative approach to modelling of such sys-
tems and may be more interesting, from the engineering
point of view, than formal languages like Petri nets, time
automata or process algebras. The main differences be-
tween Alvis and formal methods, especially process al-
gebras, are: the syntax that is more user-friendly from
the programmers point of view, and the visual modelling
language (communication diagrams) that is used to define
connections among agents.

The language is still under development. Moreover, a
computer software called Alvis Toolkit that supports mod-
elling with Alvis is also under implementation. For more
information about the current status of the project visit
http://fm.ia.agh.edu.pl.

References
Aceto, L., Ingófsdóttir, A., Larsen, K. and Srba, J. (2007). Re-

active Systems: Modelling, Specification and Verification,
Cambridge University Press, Cambridge, UK.

Formal modelling and verification of concurrent systems with Alvis 21

Fig. 17. Example 2 – LTS graph.

Andre, C. (2003). Semantics of SyncCharts, University of Nice-
Sophia Antipolis.

Ashenden, P. (2008). The Designer’s Guide to VHDL, Vol. 3,
third edn, Morgan Kaufmann.

Balicki, K. and Szpyrka, M. (2009). Formal definition of XCCS
modelling language, Fundamenta Informaticae 93(1-3): 1–
15.

Berry, G. (2000). The Esterel v5 Language Primer Version v5
91, Centre de Mathématiques Appliquées Ecole des Mines
and INRIA.

Est (2007). Welcome to SCADE 6.0.

Fencott, C. (1995). Formal Methods for Concurrency, Interna-
tional Thomson Computer Press, Boston, MA, USA.

Garavel, H., Lang, F., Mateescu, R. and Serwe, W. (2007).
CADP 2006: A toolbox for the construction and analy-
sis of distributed processes, Computer Aided Verification
(CAV’2007), Vol. 4590 of LNCS, Springer, Berlin, Ger-
many, pp. 158–163.

ISO (1989). Information processing systems, open systems in-
terconnection LOTOS, Technical Report ISO 8807.

Kotulski, L. and Szpyrka, M. (2011). Graph representation of
hierarchical Alvis model structure, Proc. of the 2011 Inter-
national Conference on Foundations of Computer Science

FCS’11 (part of Worldcomp 2011), Las Vegas, Nevada,
USA, pp. 95–101.

Kotulski, L., Szpyrka, M. and Sędziwy, A. (2011). Labelled tran-
sition system generation from Alvis language, in A. König,
A. Dengel, K. Hinkelmann, K. Kise, R. Howlett and L. Jain
(Eds), Knowledge-Based and Intelligent Information and
Engineering Systems – KES 2011, Vol. 6881 of LNCS,
Springer-Verlag, Berlin, Heidelberg, pp. 180–189.

Matyasik, P. (2009). Design and analysis of embedded sys-
tems with XCCS process algebra, PhD thesis, AGH Uni-
versity of Science and Technology, Faculty of Electrical
Engineering, Automatics, Computer Science and Electron-
ics, Kraków, Poland.

Milner, R. (1989). Communication and Concurrency, Prentice-
Hall.

Obj (2008). OMG Systems Modeling Language (OMG SysML).

Palshikar, G. (2001). An introduction to Esterel, Embedded Sys-
tems Programming 14(11).

Szpyrka, M. (2012). Alvis On-line Manual, AGH University of
Science and Technology.
URL: http://fm.ia.agh.edu.pl/alvis:manual

Szpyrka, M. and Kotulski, L. (2011). Snapshot reachabil-
ity graphs for Alvis models, in A. König, A. Dengel,
K. Hinkelmann, K. Kise, R. Howlett and L. Jain (Eds),
Knowledge-Based and Intelligent Information and Engi-
neering Systems – KES 2011, Vol. 6881 of LNCS, Springer-
Verlag, Berlin, Heidelberg, pp. 190–199.

Szpyrka, M., Kotulski, L. and Matyasik, P. (2011). Specification
of embedded systems environment behaviour with Alvis
modelling language, Proc. of the 2011 International Con-
ference on Embedded Systems and Applications ESA’11
(part of Worldcomp 2011), Las Vegas, Nevada, USA,
pp. 79–85.

Szpyrka, M., Matyasik, P. and Mrówka, R. (2011). Alvis –
modelling language for concurrent systems, in P. Bouvry,
H. Gonzalez-Velez and J. Kołodziej (Eds), Intelligent De-
cision Systems in Large-Scale Distributed Environments,
Vol. 362 of SCI, Springer-Verlag, pp. 315–342.

Marcin Szpyrka. Prof. Marcin Szpyrka
holds a position of associate professor in AGH
UST in Krakow, Poland, Department of Auto-
matics. He has a MSc in Mathematics and PhD
and DSc (habilitation) in Computer Science. He
is the author of over 100 publications, from the
domains of formal methods, software engineer-
ing and knowledge engineering. Among other
things, he is author of 3 books on Petri nets. His
fields of interest also include theory of concur-

rency and functional programming. He is currently leader of the Alvis
project. He also worked out the idea of RTCP-nets (real time coloured
Petri nets) for modelling real-time embedded systems.

22 M. Szpyrka, et. al

Piotr Matyasik. Assistant Professor at AGH
University of Science and technology, Depart-
ment of Automatics. He has MSc in Automat-
ics and PhD in Computer Science. His interest
covers formal methods, robotics, artificial intelli-
gence and programming languages. Currently in-
volved in Alvis project. He is the author of publi-
cations on artificial intelligence, formal methods,
embedded systems and software engineering.

Rafał Mrówka. Dr. Rafał Mrówka holds a
position of assistant professor in AGH UST in
Krakow, Poland, Department of Automatics. He
has a MSc in Automatics and PhD in Computer
Science. His fields of interest include software
engineering, formal methods, robotics and pro-
gramming languages. He is currently involved in
Alvis project.

Leszek Kotulski. Prof. Leszek Kotulski holds
a position of associate professor in AGH UST
in Krakow, Poland, Department of Automatics.
He has a MSc, PhD and DSc (habilitation) in
Computer Science. He is the author of over 80
publications, from the domains of formal meth-
ods, concurrent programming and software en-
gineering His fields of special interest include
distributed graph transformations and agents sys-
tems. He is currently leader of GRADIS project.

