
Adder Designer – Tools for Modelling and Analysis
of Rule-based Systems

Marcin Szpyrka

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków
email: mszpyrka@agh.edu.pl

Abstract The paper presents a formal approach to

design and analysis of rule-based systems in the form

of generalised decision tables. The approach is sup-

ported by a computer tool called Adder Designer,

equipped with decision tables editor and verification

algorithms. It allows for designing a reliable rule-

based system that finally may be incorporated into

an RTCP-net model (a Petri net model). The relevant

definitions and main properties of generalised deci-

sion tables are presented, and main features of the

Adder Designer are put forward. (Supported by KBN

Research Project No 4 T11C 035 24)

1. Introduction Monitoring and control systems are

an important class of embedded systems. They check

sensors providing information about the system’s en-

vironment and take actions depending on the sensor

reading. An important part of such a system is a con-

trol process that makes decisions based on collected

data. The control process may be implemented to use

a rule-based system to make decisions. The paper fo-

cuses on the design and analysis of such rule-based

systems for embedded control systems.

In most basic versions, a rule-based system for

control or decision support consists of a single-layer

set of rules and a simple inference engine; it works by

selecting and executing a single rule at a time, pro-

vided that the preconditions of the rule are satisfied

in the current state. A rule-based system can be rep-

resented as a single decision table with rows labelled

with rules’ numbers and columns labelled with at-

tributes’ names. Each cell in such a decision table

contains a single atomic value of the corresponding

attribute. Such decision tables are often called attribu-

tive decision tables with atomic values of attributes

(see [1], [3], [4]).

Encoding decision tables with use of atomic va-

lues of attributes only is not sufficient for many real-

istic applications. If the domains of attributes contain

more than several values it may be really hard to cope

with the number of decision rules. To handle the prob-

lem one can use formulae instead of atomic values of

attributes. In such a case, a cell in a decision table will

contain a formula that evaluates to a boolean value

for conditional attributes, and to a single value (that

belongs to the corresponding domain) for decision

attributes. The result of this approach is a decision

table with generalised decision rules (or rules’ pat-

terns). Each generalised decision rule covers a set of

decision rules with atomic values of attributes (simple

decision rules). Therefore, the number of generalised

decision rules is significantly less than the number of

the simple ones.

Adder Designer allows designing tables with both

simple and generalised decision rules. Moreover, the

tool is equipped with transformation algorithms that

allow users to convert a decision table with gener-

alised decision rules into a table with simple ones and

to glue two or more simple rules into a generalised

one. Finally, Adder Designer enables users to verify

selected qualitative properties of decision tables such

as completeness, consistency and optimality.

The paper is organised as follows. Section 2 deals

with a short description of decision tables with atomic

values of attributes. Decision tables with generalised

decision rules and their basic properties are presented

in section 3. Adder Designer is described in section 4.

The paper ends with concluding remarks and a short

summary in the final section.

2. Decision tables with atomic values of attributes

The basic form of a decision rule is as follows:

IF < preconditions >

THEN < conclusions >,
(1)

where < preconditions > is a formula defining when

the rule can be applied, and < conclusions > is the

definition of the effect of applying the rule; it can be

a logical formula, a decision or an action.

Let A denote a set of attributes selected to

describe important features of the system under

consideration, i.e., conditions and actions, A =

{A1, A2, ..., An}. For any attribute Ai ∈ A, let Di

denote a domain (finite set of possible values) of Ai.

It can be assumed that Di contains at least two dif-

ferent elements. The set A is divided into two parts.

Ac = {Ac1
, Ac2

, . . . , Ack
} will denote the set of con-

ditional attributes, and Ad = {Ad1
, Ad2

, . . . , Adm
}

will denote the set of decision attributes. For the sake

of simplicity it will be assumed that Ac and Ad are

non-empty, finite, and ordered sets. Therefore, a de-

cision rule with atomic values of attributes (a simple

decision rule) takes the following form:

(Ac1
= ac1

) ∧ . . . ∧ (Ack
= ack

) =⇒
(Ad1

= ad1
) ∧ . . . ∧ (Adm

= adm
),

(2)

where aci
∈ Dci

, for i = 1, 2, . . . , k and adi
∈ Ddi

,

for i = 1, 2, . . . ,m.

A set of simple decision rules can be represented

as a simple decision table. To construct such a deci-

sion table, we draw a column for each conditional and

decision attribute. Then, for every possible combina-

tion of values of conditional attributes a row should

be drawn. We fill cells so as to reflect which actions

should be performed for each combination of condi-

tions. Let R = {R1, R2, . . . , Rl} denote the set of all

decision rules. A general scheme of such a decision

table is as follows:

Ac1
. . . Ack

Ad1
. . . Adm

R1 a1c1
. . . a1ck

a1d1
. . . a1dm

R2 a2c1
. . . a2ck

a2d1
. . . a2dm

...
... . . .

...
... . . .

...

Rl alc1
. . . alck

ald1
. . . aldm

(3)

An example of a simple decision table with two

conditional and one decision attribute is presented in

Table 1. Domains for these attributes are defined as

follows:

DA = int with 1..4,

DB = with a|b,
DC = bool with (off , on).

Table 1. Example of a simple decision table

A B C
R1 1 a off
R2 1 b on
R3 2 a off
R4 2 b on
R5 3 a on
R6 3 b on
R7 4 a on
R8 4 b on

3. Decision tables with generalised decision rules

Let’s consider the set of decision rules presented in

Table 1. If the value of attribute B is equal to b the

decision is allways equal to on . Therefore, instead of

the rules R2, R4, R6 and R8, we can take only one

rule: (B = b) =⇒ (C = on). The new rule is said

to cover the rules R2, R4, R6 and R8. On the other

hand, if the value of attribute A is equal to or greater

than 3, the decision is also allways equal to on . Thus,

instead of the rules R4, . . . , R8, we can take the rule:

(A ≥ 3) =⇒ (C = on).

A formula for an attribute Ai ∈ A in a rule Rj ∈
R will be denoted by Rj(Ai). To every attribute Ai ∈
A there will be attached a variable Ai that may take

any value belonging to the domain Di. A formula

Rj(Ai) ≡ Ai is a shorthand for Rj(Ai) ≡ Ai ∈
Di and it always evaluates to true. Table 1 can be

represented in the following condensed form:

Table 2. Generalised decision table – version 1

A B C
R1 A B = b on
R2 A ≤ 2 B = a off
R3 A ≥ 3 B = a on

The decision table with generalised decision rules

presented in Table 2 is not the only possible transfor-

mation of the Table 1. Another interesting possibility

of transformation is presented in Table 3. The only

difference between the tables is the modification of

rule R3. After this modification, both rules R1 and

R3 can be applied in some states. Such a situation is

not treated as a mistake.

Table 3. Generalised decision table – version 2

A B C
R1 A B = b on
R2 A ≤ 2 B = a off
R3 A ≥ 3 B on

It is evident that transformation of a simple deci-

sion table into a corresponding generalised decision

table is ambiguous. The final version of such a table

is dependent on subjective decisions of a designer.

Regardless of this, a generalised decision table has to

fulfill the following requirements: Each cell of a deci-

sion table should contain a formula, which evaluates

to a boolean value for conditional attributes, and to

a single value (which belongs to the corresponding

domain) for decision attributes.

Decision rules providing a decision or conclusion

will be called positive rules. Sometimes it is neces-

sary to state in an explicit way that the particular

combination of input values (values of conditional

attributes) is impossible or not allowed. Such com-

binations of input values are represented as negative

rules. For negative rules values of decision attributes

are omitted. When necessary, R+ will be used to de-

note the subset of positive rules, and R− will be used

to denote the subset of negative rules.

To be usefull a generalised decision table should

satisfy some qualitative properties such as complete-

ness, consistency (determinism) and optimality. A de-

cision table is considered to be complete if for any

possible input situation at least one rule can produce

a decision. A decision table is deterministic if no two

different rules can produce different results for the

same input situation. The last property means that any

dependent rules were removed. Formal definitions of

these properties are presented below.

Definition 1. A transition function is a function ϕ

that satisfies the following conditions: ϕ : A → D1 ∪
D2 ∪ · · · ∪Dn ∧ ∀Ai ∈ A : ϕ(Ai) ∈ Di.

Definition 2. A transition function ϕ is said to satisfy

the conditional part of a rule Rj ∈ R (ϕ ∼= Rj |Ac)

iff each formula Rj(Ai), where Ai ∈ Ac, evaluates to

true for values the function ϕ assigns to conditional

attributes.

A transition function ϕ is said to satisfy a rule

Rj ∈ R+ (ϕ ∼= Rj) iff ϕ satisfies the conditional

part of the rule Rj and each formula Rj(Ai), where

Ai ∈ Ad, evaluates to ϕ(Ai).

Any transition function cannot be said to satisfy

a negative rule.

Definition 3. The set R is complete iff for any tran-

sition function ϕ there exists a rule Ri ∈ R such that

ϕ satisfies the conditional part of the rule Ri, i.e.:

∀ϕ∃Ri ∈ R : ϕ ∼= Ri|Ac.

Let Φ+denote the set of all transition functions

such that for any ϕ ∈ Φ+ and for any decision rule

Rj ∈ R−, the transition function ϕ does not satisfy

the conditional part of Rj .

Definition 4. The set R is consistent iff for any tran-

sition function ϕ ∈ Φ+, and any two rules Ri, Rj ∈
R+ if ϕ satisfies the rule Ri, and ϕ satisfies the con-

ditional part of the rule Rj , then ϕ satisfies the rule

Rj , i.e.: ∀ϕ ∈ Φ+ ∀Ri, Rj ∈ R+ : (ϕ ∼= Ri ∧ ϕ ∼=
Rj |Ac) ⇒ ϕ ∼= Rj .

Definition 5. Let R be a complete and consistent set

of decision rules. The ruleRi ∈ R+ is independent iff

the set R−{Ri} is not complete. The ruleRi ∈ R+ is

dependent if and only if the rule is not independent.

The set R is semi-optimal if and only if any rule

belonging to the set R is independent.

The semi-optimality should be verified after a set

of rules is complete and consistent. The verification

algorithm is presented in Fig. 1.

Begin

End

Is the set R
complete?

Is the set R
optimal?

Is the set R
consistent?

Yes

Yes

Yes

Modifying
rules

No

No

No

Removing
dependent

rules

Figure 1. Scheme block of the verification procedure

4. Adder Designer Manual analysis of a decision

table can be time-consuming even for very small sets

of decision rules. Adder Designer supports design and

analysis of both simple and generalised decision ta-

bles. Adder Designer is a free software covered by

the GNU Library General Public License. It is being

implemented in the GNU/Linux environment by the

use of the Qt Open Source Edition. Qt is a compre-

hensive C++ application development framework. It

includes a class library and tools for cross-platform

development and internationalisation. The Qt Open

Source Edition is freely available for the development

of Open Source software for Linux, Unix, Mac OS X

and Windows under the GPL license. Code written

for either environment compiles and runs with the

other ones. Adder Tools home page, hosting informa-

tion about current status of the project, is located at

http://adder.ia.agh.edu.pl. An example of Adder De-

signer session is shown in the Fig. 2. The decision ta-

ble presented in the figure contains three conditional

and one decision attribute. Moreover, it contains six

positive and one negative rule.

The proposed approach to designing of decision

tables consists of a few steps. It is first necessary to

define attributes selected to describe important fea-

tures of the system under consideration. There are

possible three types of domains: integer, boolean and

enumerated data type. Moreover, a new domain may

be defined as an alias for already defined one. Se-

condly, it is necessary to choose conditional and de-

cision attributes. Each attribute can be used twice.

Finally, the set of decision rules should be defined.

For positive rules, each cell in the corresponding row

must be filled. On the other hand, for negative rules

the cells that correspond to decision attributes must

stay empty.

Figure 2. Example of Adder Designer session

Figure 3. Table menu

All commands used for designing of decision ta-

bles are gathered in Table and pop-up menu. The

menus are shown in Fig. 3 and Fig. 4 respectively.

Figure 4. Pop-up menu

The verification stage is included into the design

process. At any time, during the designing stage, users

can check whether a decision table is complete, con-

sistent or it contains some dependent rules.

Let R = {R1, R2, . . . , Rl} be a set of decision

rules and Φ denote the set of all transition functions.

Let ∼c be an equivalence relation on Φ, such that:

ϕ1 ∼c ϕ2 ⇔ ∀Ai ∈ Ac : ϕ1(Ai) = ϕ2(Ai). (4)

Restriction of the set Φ to the set of conditional

attributes is defined as follows:

Φ|Ac = {ϕ|Ac : ϕ ∈ Φ}. (5)

Let ψ ∈ Φ|Ac, ϕ ∈ Φ and ψ = ϕ|Ac.

ψ ∼= Ri|Ac ⇔ ϕ ∼= Ri|Ac. (6)

Adder Designer uses methods based on colour

Petri nets theory to check completeness, consistency

and semi-optimality (see [7]). A simplified represen-

tations of these algorithms are as follows:

Completeness

Ψ := ∅;

for all ψ ∈ Φ|Ac do

covered := false;

for all Ri ∈ R do

if ψ ∼= Ri|Ac then

covered := true;

end if

end for

if covered = false then

Ψ = Ψ ∪ {ψ};

end if

end for

if |Ψ| > 0 then

Not covered states: Ψ;

end if

The result of completeness analysis is a list of

input states (combinations of values of conditional

attributes) that are not covered by decision rules. For

the decision table presented in Fig. 2 the report of

completeness analysis is as follows:

∗∗∗ Not cove r ed s t a t e s : ∗∗∗
0 a no

1 a no

2 a no

2 b no

6 a yes

Tab le i s no t comp le te .

Let ψ ∈ Φ|Ac and let Ri ∈ R+ be a positive

decision rule such that ψ ∼= Ri|Ac. ψ∗

i ∈ Φ will be

used to denote a transition function such that:

∀A ∈ Ac : ψ(A) = ψ∗

i (A) ∧ ψ∗

i
∼= Ri. (7)

Consistency

Θ := ∅;

for all ψ ∈ Φ|Ac do

R′ := ∅;

Ψ := ∅;

for all Ri ∈ R do

if ψ ∼= Ri|Ac then

R′ := R′ ∪ {Ri};

Ψ := Ψ ∪ {ψ∗

i };

end if

end for

if |R′| > 1 ∧R′ ∩R− = ∅ ∧ |Ψ| > 1 then

Θ = Θ ∪ {R′};

end if

end for

if |Θ| > 0 then

Not consistent sets of rules: Θ;

end if

After consistency analysis users receive a list of

sets of inconsistent rules. Each such a set of rules is

labelled with an input state that is covered by the rules

and results of applying these rules for the state are

also presented. A part of consistency analysis report

for the table presented in Fig. 2 is as follows:

∗∗∗ Not c o n s i s t e n t s e t s o f r u l e s : ∗∗∗
S t a t e : 0 c yes

R1 : yes

R3 : no

R4 : yes

S t a t e : 1 c yes

R1 : yes

R3 : no

R4 : yes

. . .

Semi-optimality

R′ := R;

for all ψ ∈ Φ|Ac do

S := ∅;

for all Ri ∈ R do

if ψ ∼= Ri|Ac then

S := S ∪ {Ri};

end if

end for

if |S| = 1 then

R′ := R′ − S;

end if

end for

if |R′| > 0 then

Dependent rules: R′;

end if

The result of semi-optimality analysis is a set of

dependent rules. For the considered decision table

such a set contains rule R6 only.

In addition to this the commands Unpack table

to classical rules and Pack rules with independent

attributes are used to convert a generalised decision

table into a simple one and vice versa.

Adder Designer uses XML format to store

projects. A piece of XML code describing a decision

table is presented below:

< a t t r i b u t e name=”A”

domain=” i n t wi th 0 . . 9 ” / >

. . .

< t a b l e name=” Example1”>

< c o n d i t i o n a l A t t r i b u t e s >

< a t t r i b u t e name=”A”/ >

< a t t r i b u t e name=”B”/ >

< a t t r i b u t e name=”C”/ >

</ c o n d i t i o n a l A t t r i b u t e s >

< d e c i s i o n A t t r i b u t e s >

< a t t r i b u t e name=”C”/ >

</ d e c i s i o n A t t r i b u t e s >

< r u l e s >

< r u l e >

< fo rmu l a

e x p r e s s i o n =”A &l t ; 2”/ >

< fo rmu l a

e x p r e s s i o n =”B &l t ;& g t ; a ” / >

< fo rmu l a e x p r e s s i o n =”C”/ >

< fo rmu l a e x p r e s s i o n =”C”/ >

</ r u l e >

. . .

</ r u l e s >

</ t a b l e >

The XML format may be used by another tools

to generate input files for Adder Designer. For exam-

ple, it allows users to interchange data between Adder

Designer and Mirella tool ([5]). Mirella is a tool for

support of visual design, verification and implemen-

tation of rule-based systems. Mirella uses eXtended

Tabular Trees for knowledge specification and formal

properties of the developing system are verified by the

external modules integrated with Prolog-based infer-

ence engine.

5. Summary Adder Designer, a tool for design and

analysis of rule-based systems in the form of gener-

alised decision tables, has been presented in the pa-

per. The tool is equipped with a decision table edi-

tor and verification procedures. A survey of decision

tables properties and the corresponding verification

algorithms has been also presented.

Some of the algorithms are based on typical Petri

nets analysis methods. The considered decision ta-

bles may be automatically transformed into an equiv-

alent Petri net form called D-net. A D-net is a non-

hierarchical coloured Petri net. D-nets may be used

both to specify external system behaviour and to

model a rule-based system. In the second case, D-

nets constitute the bottom layer of an RTCP-net model

(a Petri net model). For more details see [6].

Development of the tool is still in progress. Our

future plans will focus on development of another

analysis methods. Especially, we are interested in im-

plementing faster algorithms for verification decision

tables’ properties. An example of such an algorithm,

for completeness analysis, is placed in Experimental

menu.

Finally, Adder Designer is released under the GPL

license and everyone may develop his own verification

procedures and include them into the tool.

References

[1] Davis. A.M.: A comparison of techniques for
the specification of external system bahavior.
Communication of the ACM, Vol. 31, No 9,
pp. 1098–1115, 1988

[2] Gibek M.: Wykorzystanie kolorowanych sieci
Petriego do modelowania i analizy systemów
regułowych. Praca magisterska, Wydział EAIiE,
AGH Kraków, 2005 (promotor: M. Szpyrka)

[3] Ligęza A.: Logical Foundations for Rule-Based
Systems. Uczelniane Wydawnictwa Naukowo-
Dydaktyczne AGH, 2005

[4] Macaulay, L. A.: Requirements Engineering.
Springer Verlag, Berlin, 1996

[5] Nalepa G. J., Szpyrka M.: Two Formal Ap-
proaches to Design and Verification of Em-
bedded Rule-based Systems. Proc. of 29th
IFAC/IFIP Workshop on Real-Time Program-
ming WRTP 2004. September 6-8, Istanbul,
Turkey, 2004

[6] Szpyrka M.: Fast and flexible modelling of real-
time systems with RTCP-nets. Computer Sci-
ence, Vol. 6, pp. 81–94, 2004

[7] Szpyrka M., Szmuc T.: D-nets – Petri Net Form
of Rule-based Systems. (submitted to Journal on
Foundation of Computing and Decision Science)

